The Qualitative Habitat Evaluation Index [QHEI]: Rationale, Methods, and Application

November 6, 1989

Edward T. Rankin Ecological Assessment Section

P.O. Box 1049, 1800 WaterMark Dr., Columbus, Ohio 43266-0149

The Qualitative Habitat Evaluation Index [QHEI]: Rationale, Methods, and Application

Edward T. Rankin
Ohio EPA
Division of Surface Water
Ecological Assessment Section
1685 Westbelt Drive
Columbus, Ohio 43228

Introduction

The presence and abundance of stream fishes is strongly related to the physical and chemical characteristics of a stream (Gorman and Karr 1978; Schlosser 1982). With changes in nutrients and habitat, changes such as those that occur with increasing stream size, obvious shifts in fish community structure and function occur (e.g., River continuum concept: Vannote et al. 1980; Minshall et al. 1985). Although these changes in stream systems are often viewed as gradual or forming a "continuum", in reality there can often be much variability in local lithology and stream morphology that can affect fish communities (Minshall et al. 1985). Such variability has been increased by human activities; channel dredging and agricultural modification of watersheds can alter nutrient cycling patterns, and, in turn, fish community structure. If such altered streams enter more natural watersheds (e.g., wooded) they often regain more natural habitat and chemical characteristics (Marsh and Luey 1982). Much of the degradation observed in fish communities related to habitat disturbance is strongly influenced by the extent of modifications. As the extent of modifications increase the probability of local extinctions increase and a more disturbed community results.

Regulatory activities under the Federal Water Pollution Control Act of 1972 and its 1977 and 1987 amendments require knowledge of the potential fish or biological community that can be supported in a stream or river (termed aquatic life "use designations") for setting "benchmarks" of community expectations to compare against actual instream performance. A procedure for relating stream potential to habitat quality would provide some insight into how habitat might affect biological expectations in a given waterbody.

To help with this problem we have developed an index of macro-habitat quality, the Qualitative Habitat Evaluation Index (QHEI). This index is designed to provide a measure of habitat that generally corresponds to those physical factors that affect fish communities and which are generally important to other aquatic life (e.g., invertebrates). The QHEI was developed within several constraints associated with the practicalities of conducting a large-scale monitoring program, i.e., we desired to construct an index that would work reliably for our purposes yet require few additional resources to use. Specifically, (1) the index needed to be easy to record in a minimal amount of time and with a minimum of field measurements, (2) the index should take advantage of the field experience of our field biologists (indeed, it was the realization that the subjective habitat evaluations of our

¹In actual practice few States measure aquatic community performance directly but rely on chemical surrogates to measure performance. See OhioEPA (1987a) for shortfalls of this approach alone.

staff were often quite accurate which spurred development of this index), (3) the index should include all of the important variables that could influence fish communities (maximize explanatory power of index), (4) the index should have acceptable reproducibility among different workers, and 5) obviously, the index needed to be useful enough to separate the relative effects of habitat vs water quality on fish community structure or at a minimum determine the baseline community that could be expected in a particular habitat. The index is based on six interrelated metrics: substrate, instream cover, channel morphology, riparian and bank condition, pool and riffle quality, and gradient. These attributes have been shown to be correlated with stream fish communities (Table 1).

This document discusses (1) the relationship between the QHEI and its metrics with the IBI in minimally impacted (by chemical water quality) stream reaches in Ohio, (2) the importance of basin and subbasin landuse and stream modification and the limiting effects of "average" habitat conditions on the QHEI as a predictive tool, (3) guidelines for use of the QHEI for determining aquatic life use designations of flowing waters, and (4) the variability that can be expected in the calculation of the QHEI by different biologists.

Table 1. Literature citations describing correlations between fish communities or populations and the physical factors used as metrics in the QHEL.

Metric	Citation
General	Gorman and Karr (1978), Schlosser (1982a), Platts et al. (1983) Karr et al. (1983a)
Substrate	Lyons et al. (1988), Berkman and Rabeni (1987)
Cover	Angermeier and Karr (1984), Benke et al. (1984, 1985), Marzolf (1978)
Stream Channel	Griswold et al. (1978), Portt et al. (1986), Trautman (1939), Trautman and Gartman (1974), Schlosser (1982a,b)
Riparian Quality	Schlosser and Karr (1981), Dudley and Karr (1977), Karr and Schlosser (1977)
Pool/Riffle Quality	Schlosser (1982a; 1987),
Gradient	Trautman (1941; 1981), Hocutt and Stauffer (1975),

Background

Physical habitat in streams has been measured and quantified by a multitude of workers; however, for our purposes the methodologies are either too time consuming and costly (e.g. Habitat Suitability Indices; Terrell 1984 or Habitat Quality Index; Binns and Eiserman 1979) or do not encompass a wide enough range of physical attributes (Habitat Diversity Index; Karr and Gorman 1979). The QHEI is composed of an array of metrics that describe attributes of physical habitat that may be important in explaining the species presence, absence, and composition of fish communities in a stream. We envision the QHEI filling a gap between completely subjective habitat descriptions and more labor intensive Habitat Suitability Indices developed for each species in a fish community. Although it may not have the resolution to predict the abundance of each individual species in a stream, it should be useful in explaining shifts in the general composition and ecological function of lotic fish communities. This paper will primarily present data on the most recent form of the QHEI (OhioEPA 1989). Some reference will be made to an older form of the QHEI which is compared to the current form in Table 2 (see Ohio EPA 1989a); these references will generally explain the rationale for changes to the original structure of the QHEI. For convenience sake the current index will be referred to as the QHEI and the past effort the "Old" QHEI.

Scale

The influence of habitat on biological organisms and communities can be examined from several scales depending on an investigators purpose. The QHEI is a macro-scale approach that measures emergent properties of habitat (sinuosity, pool/riffle development) rather than the individual factors that shape these characters (current velocity, depth, substrate size).

Scoring

The field procedures and scoring criteria for the QHEI are described in Ohio EPA (1989). The field sheet for the QHEI consists of lists of qualitative descriptors that are checked as appropriate. Highest scores were assigned to the habitat parameters that have been shown to be correlated with streams that have high biological diversity and biological integrity with progressively lower scores assigned to less desirable habitat features. For example, the widest riparian width, > 50m, was assigned a 4 and narrower categories of riparian width were assigned progressively lower scores down to a score of zero for no riparian vegetation.

Table 2. Metrics and scoring ranges for the old version and the new version of the QHEI.

"Old " OHEI		"New" OHEI	
Substrate	15 pts	Substrate	20 pts
1) Type	2-14	1) Type	0-20
2) Quality	-2-2	2) Quality	-5-3
Instream Cover	15 pts	Instream Cover	20 pts
1) Type	0-8	1) Type	0-9
2) Amount	1-7	2) Amount	1-11
Channel Quality	15 pts	Channel Quality	20 pts
1) Sinuosity	1-4	1) Sinuosity	1-4
Development	1-4	2) Development	1-7
Channelization	1-4	3) Channelization	1-6
4) Stability	1-3	4) Stability	1-3
Riparian/Erosion	15 pts	Riparian/Erosion	10 pts
1) Width	0-5	1) Width	0-4
Floodplain Quality	1-5	2) Floodplain Quality	0-3
3) Bank Erosion	1-5	3) Bank Erosion	1-3
Pool/Riffle	15 pts	Pool Riffle	20 pts
1) Max. Depth	0-3	 Max Depth 	0-6
2) Cover Quality	0-3	2)	1000000
Current Available	-2-4	 Current Available 	-2-4
4) Pool Morphology	0-2	4) Pool Morphology	0-2
Riffle/Run Depth	1-3	5) Riffle/Run Depth	0-4
Riffle Substrate Stability	0-1	Riffle Substrate Stab.	0-2
7) Riffle Embeddedness	0-1	7) Riffle Embeddedness	-1-2
Drainage Area	0-15 pts	Drainage Area	Not included
Gradient	0-10 pts	Gradient	0-10 pts
Total Score	0-100 pts.	Total Score	0-100 p

Methods

Three groups of data were used to examine the behavior of the QHEI, (1) data from streams throughout Ohio that represent sites minimally impacted by chemical water quality or habitat ["warmwater" reference sites], (2) sites from streams that contain areas that have relatively unimpacted chemical water quality but have documented habitat impacts ["modified" reference sites], and (3) examples from within stream basins where we have used the QHEI in some water quality management decision. Data in groups one and two are the same that were used to generate Ohio's biocriteria; their selection and use is described in OhioEPA (1987b). All sites were sampled with one of three electrofishing methods (see OhioEPA 1989) which is based on the size and characteristics of the stream

or river². Data here are analyzed by site types: headwater sites (< 20 sq mi drainage area), wading sites (20-554 sq mi drainage area), and boat sites (90-6471 sq miles drainage area). A QHEI was calculated over the exact length of stream that was sampled by electrofishing: 150-200 m for headwater and wading sites and 500 m for boat sites. Calculation of the Index of Biotic Integrity (IBI) is explained in detail in Karr (1981), Karr et al. (1986), and OhioEPA(1987b). Some analyses were done by ecoregion. Descriptions of Ohio ecoregions and the rationale for their influence in Ohio is found in Whittier et al. (1987) and Ohio EPA (1989b,c).

Statistical Analysis

The influence of habitat data on stream fish communities was examined with simple linear and exponential regressions and frequency analyses of combined and individual components of QHEI metrics in relation to the IBI. Chi-square was used, by site type, to determine whether the frequency of sites with a given habitat characteristic in an IBI range differed substantially from the hypothetical population frequency based on the IBI distribution at all sites. Where expected frequencies were less than 5 for an IBI range they were combined with the adjacent IBI range. Data was insufficient to calculate chi-square by ecoregion within site types, however, ecoregions are distinguished on frequency plots. All tests were considered statistically significant at P > 0.05.

²Boat and wading sites overlap somewhat in drainage area range because stream depth and other habitat features dictate the type of equipment that can be used. These features vary with physiography in Ohio (e.g., very deep streams with small drainage areas that must be sampled with boats in WAP).

Results and Discussion

Relationship between the QHEI and the Index of Biotic Integrity [IBI]

Statewide Trends

To examine the relationship between the IBI and QHEI, linear and exponential models were fit to the data. Linear regression indicated, for all data combined statewide and for all sampler types, that the QHEI is significantly correlated with the IBI ($r^2=0.45$). An exponential model provided a slightly better fit to the data ($r^2=0.47$) than the linear model (Figure 1).

Figure 1. Least squares exponential regression analysis of the QHEI and IBI for 471 warmwater and modified reference sites (all site types and all ecoregions)

Significant linear regressions were also obtained for each sampler type (headwater sites - r^2 =0.42, wading sites - r^2 =0.40, boat sites - r^2 =0.59) and in each case an exponential model provide a slightly better fit (Figure 2). The exponential models are also more consistent with the theoretical relationship between habitat and the structure of fish communities. The slope of the exponential models decreases at the lower IBI scores and the lines do not descend below an IBI of 20. In contrast, the linear models have Y-intercepts (IBI) of between 9 and 14.

Figure 2. Least squares exponential regression analysis of the QHEI and IBI for warmwater and modified reference sites (all ecoregions) for headwater sites (top panel), wading sites (middle panel), and boat sites (bottom panel).

IBI scores of less than 20 are usually associated with "toxic" impacts where large components of the community are lost or disrupted and the abundance and biomass of the community is greatly reduced. In contrast, impacts that are predominantly due to habitat modification result in a shift of community function (e.g., omnivores increase relative to insectivores) with correspondingly less marked changes in structure. For impacts solely attributable to habitat modification IBI scores rarely descend below an IBI of 20 regardless of the QHEI score. Combinant analyses that includes individual IBI metrics and the modified index on well-being (Iwb) further separates the community response characteristics between habitat and toxic impacts

Some of the variation observed in the relationship between IBI and QHEI is related to factors "external" to the form of the QHEI or IBI. Two of the sub-categories of the modified reference site data include modifications that do not have commensurate effects on the QHEI, as they do on the IBI (impoundment, mine drainage). Also, some of the variation in the models discussed above is related to regionally varying factors other than habitat including background concentrations of the chemical constituents of streams (Whittier et al. 1987). There are significant differences in the QHEI by ecoregion (Figure 3) that are similar to the ecoregion patterns observed for the IBI (Figure 3). These factors account for the substantial variability of the QHEI/IBI relationship around the regression line. To reduce the effects of factors other than habitat that vary by ecoregion further analyses were done by ecoregion where data was sufficient.

QHEI by Ecoregion

The QHEI was significantly correlated with the IBI in all ecoregions of Ohio where data included a sufficient range of QHEI and IBI values (Table 3). Non-significant correlations were probably related to limited ranges of the available data. For example, in the HELP ecoregion at headwater sites the QHEI only ranged from 24-68 and the IBI from 19-26; in the IP the QHEI ranged from 58-73 and the IBI from 36-58. Either the QHEI or IBI range in each was insufficient to demonstrate a meaningful relationship.

Figure 3. Box and Whisker Plots (medians, 25th and 75th percentiles, maximum value, minimum value, and outliers > two interquartile ranges from the median) for warmwater (open boxes) and modified (shaded boxes) reference sites for the IBI (top panel) and QHEI (bottom panel).

Table 3. Correlation coefficients (r) between the QHEI and the Index of Biotic Integrity, by Ecoregion and sample type (sample type is related to stream size). Asterisks denote significance at P < 0.05 (*) or P < 0.01 (**).

Ecoregion					
Statistic	HELP	IP	EOLP	WAP	ECBI
		Н	eadwater		
r	.27NS	.24NS	.56**	.62**	.69**
N	8	13	35	31	52
			Wading		
r	.28NS	.16NS	.49**	.59**	.61**
N	16	20	28	- 47	73
			Boat		
I	.60**	.44NS	.90**	.81**	.76**
N	28	7	22	26	56

Correlation coefficients were generally highest for boat sites and lower for wading and headwater sites. Smaller streams are more likely to be affected by riparian conditions and modification than larger streams (Karr and Schlosser 1977). Riparian modifications may affect streams on a basin or subbasin scale that may be less evident in site specific measures of habitat. For example, removal of riparian vegetation in headwater streams may lead to a 6-9°C increase in temperature and a disruption of the allocthonous energy inputs (Karr and Schlosser 1977). Site specific habitat measures could underestimate such effects and the existing community could be of a lower integrity than that predicted by site specific habitat alone. Some of this variation in biological communities is explainable within the framework of ecoregion differences, but is also related to anthropogenic basin or subbasin modifications of stream systems.

Basin Averages of Habitat Quality

Although QHEI attempts to explain site-specific variation in the IBI due to habitat, the predominance and proximity of nearby, higher or lower quality habitat can result in IBI's greater or less than expected based on a single site-specific QHEI. Similarly, a predominance of poor land use practices and habitat modifications throughout a basin can result in IBI scores lower than expected based on a single site-specific QHEI. Recent ecological work has examined the influence of "sinks" and "sources" of individuals on populations (Pulliam 1988; also see Levin 1989); such a phenomenon also is likely at work in stream ecosystems. Streams that have a large proportion of their basin with natural habitats generally intact will be able to support good fish communities in short stretches of degraded habitat.

Figure 5. Linear regression models of QHEI versus IBI for four Ohio streams. Triangles represent stream basins with generally poor habitat quality and circles represent stream basins with good-excellent habitat quality.

Figure 4 illustrates stream basins with high quality stream habitat and basins with low quality stream habitat and their associated IBI values. Sites represented by triangles are stream systems with generally intact, high quality, habitat, Twin Creek (average QHEI=77) and the Kokosing River (average QHEI=77); sites represented by boxes are two stream systems with widespread modification resulting in generally degraded habitat, the Little Auglaize River (average QHEI=31) and the Tiffin River (average QHEI=51). A site specific QHEI of 50 would result in an IBI of about 25 in the Tiffin River or the Little Auglaize River and an IBI of about 45-50 in Twin Creek or the Kokosing River. Thus using the QHEI as a site specific predictor of IBI can vary vary widely depending on the predominant character of the habitat in a basin or reach.

Thus, it is evident that general basin characteristics and overall habitat quality influence stream fish communities more so than does site specific habitat. Such influences may also act through temperature modifications or disruptions of the energy flow through the biotic system and may not be evident in habitat measures. Some proportion of ecoregion variation in the biota is also explained by patterns of nutrient and chemical constituents of streams that arise because of differing soil types, parent materials, and natural vegetation.

The implication of these other sources of variation in the biota is that the QHEI (or any site specific habitat measure) not inclusive enough to be an absolute site-specific predictor of fish communities without further consideration of basin-wide or reach-wide influences on

fish communities. This is incorporated into the protocols for assigning aquatic life use designations (discussed later).

Importance on Individual Metrics

The effects of QHEI metrics on the IBI were examined with correlation coefficients and metric subcomponent effects with chi-square goodness of fit tests. Although significant correlation coefficients do not imply causality there are some general trends that are consistent and that make ecological sense. Three metrics are consistently correlated with the IBI: pool quality, channel quality, and substrate quality (Tables 4 and 5). In contrast, the riparian zone quality is less often correlated with the IBI. This may be related to riparian effects being more important on a basin wide than site specific basis. Analysis of the frequency of occurrence of QHEI metric subcomponents among IBI ranges indicates that "negative" habitat characteristics generally (but not universally) contribute more to the explanation of deviations from a random distribution with IBI range than "positive" habitat characteristics (Table 6). The following sections examine the frequency distributions for important habitat characteristics and patterns of correlation for each metric and provides ecological explanations for these trends.

Table 4. Correlations coefficients (r values) between individual components of the QHEI and the Index of Biotic Integrity, by Ecoregion and sampling type. An asterisk denots significance at P < 0.05.

QHEI			Ecoregion		
Metric	HELP	IP	EOLP	WAP	ECBI
861		Во	at Methods		
N	28	8	22	26	56
Substrate	.71*	.02NS	.84*	.86*	.47*
Cover	.19NS	22NS	.46*	.55*	.38*
Channel	.63*	47NS	.86*	.62*	.61*
Riparian	.02NS	28NS	.55*	.51*	.26NS
Pool	.16NS	31NS	.84*	.40*	.65*
Riffle	.41*	31NS	.86*	.50*	.46*
Gradient	.01NS	54NS	.69*	* .83*	.52*
QHEI	.60*	44NS	.90*	.81*	.76*
2152		Waa	ling Methods		
N	16	20	28	47	73
Substrate	.43NS	03NS	.36*	.62*	.40*
Cover	07NS	.17NS	.22NS	.49*	.60*
Channel	08NS	14NS	.41*	.39*	.58*
Riparian	36NS	39NS	.09NS	.10NS	.32*
Pool	.38NS	14NS	.38*	.15NS	.52*
Riffle	.18NS	11NS	.45*	.26NS	.36*
Gradient	.29NS	.47*	.56*	.31*	.44*
QHEI	.23NS	02NS	.49*	.59*	.61*
		Head	vater Methods		
N	8	13	3.5	31	52
Substrate	.05NS	39NS	.38*	.67*	.51*
Cover	.37NS	36NS	.42*	.61*	.64*
Channel	.48NS	45NS	.57*	.63*	.65*
Riparian	.29NS	.36NS	.13NS	02NS	.45*
Pool	.11NS	.61*	.33*	.11*	.53 *
Riffle	.14NS	.24NS	.08NS	.02*	.46*
Gradient	14NS	45NS	.27NS	06NS	.34*
OHEI	.27NS	24NS	.56*	.62*	.69*

Tables 5. Relative ranking by the magnitude of significant (P < 0.05) correlation coefficients (r) between the QHEI and IBI for Ohio ecoregions and sampling methods

Е	coregion	gion N Metric ranking				
			Boat methods			
H	IELP	28	Substrate > Channel > Riffle			
H	P	7	No significant correlations			
E	OLP	22	Channel > Riffle > Substrate > Pool > Gradient > Riparian > Cover			
V	VAP	26	Substrate > Gradient > Channel > Cover > Riparian > Riffle > Pool			
	CBP	56	Pool > Channel > Gradient > Substrate > Riffle > Cover			
			Wading Methods			
Ĥ	IELP -	16	No significant correlations			
11	2,000 v 20 m 20 m	20	Gradient			
	OLP	28	Gradient > Riffle > Channel > Pool > Substrate			
- 23	VAP	47	Substrate > Cover > Channel > Gradient			
	CBP	73	Cover > Channel > Pool > Gradient > Substrate > Riffle > Riparian			
			Headwater Methods			
Н	IELP	8	No significant correlations			
11	9	13	Pool			
E	OLP	35	Channel > Cover > Substrate > Pool			
1,77	VAP	31	Substrate > Channel > Cover			
	CBP	52	Channel > Cover > Pool > Substrate > Riffle > Riparian > Gradient			

Table 6. Chi-square values for distribution of reference sites among IBI ranges for habitat subcomponents of the QHEI. Asterisks indicate significance level ($^{*}P < 0.05$, $^{**}P < 0.01$, $^{***}P < 0.005$).

QHEI Subcomponent	Headwater sites	Wading sites	Boat sites	
Substrate Silt Covering				
Heavy/Moderate	20.2***	15.3**	27.4***	
Normal/Low Embeddedness	10.4 NS	8.4 NS	12.8*	
Severe/Moderate Low/None Type	14.4** 5.5 NS	31.0*** · 8.9 NS	22.2*** 6.6 NS	
Boulders	_1	9.3*	2.8 NS	
Cobble	4.3 NS	11.6*	23.0***	
Gravel Sand	7.5 NS 4.4 NS	0.7 NS 3.0 NS	12.8 5.4 NS	
Silt/Muck Origin	21.2***	25.8***	30.9***	
Tills	6.7 NS	3.4 NS	8,9 NS	
Limestone	2.8 NS	8.1*	_1	
Pool/Riffle Quality Maximum Depth				
> 70 cm	6.5 NS	5.6 NS	0.2 NS	
< 70 cm Morphology	6.9 NS	17.0***	_1	
Wide	8.4 NS	11.9 NS	26.2***	
Narrow/Equal Riffle Depth	12.9*	25.3***	23.9***	
> 10 cm	2.6 NS	6.6 NS	27.9***	
< 10 cm Current Types	1.3 NS	6.9 NS	_1	
Fast	8.5*	16.5**	15.5**	
Eddies Riffle Substrate Stability	1	7.0 NS	6.4 NS	
Stable	8.9 NS	14.9*	27.5***	
Unstable Riffle Substrate Embeddednes	10.6***	20.4***	1	
Extensive/Moderate	9.2**	13.1**	_1	
Low/None	8.7 NS	13.0 NS	27.1***	
Cover	C BELLEVIA	0.00 500 450 150 150 150 150 150 150 150 150 150 1	5230	
Cover Amount	0.0.122	*****	0.0.340	
Extensive/Moderate	9.9 NS	13.2 NS	8.3 NS	
Sparse/Nearly Absent Cover Type	34.5***	39.0***	28.4***	
Deep Pools	6.8 NS	7.0 NS	0.4 NS	

Channel Characteristics			
Sinuosity	15.0*	0 + 110	19
High/Moderate	15.9*	9.1 NS	16.7
Low/None Development	38.6***	18.6***	15.8
Excellent/Good	20.8***	15.0*	31.9***
Fair/Poor Channel Modifications	39.5***	36.6***	36.3***
None/Recovered	12.9 NS	9.3 NS	4.0 NS
Recent/Recovering Stability	41.7***	42.3***	10.4**
High	11.3 NS	15.1** *	12.8*
Moderate/Low	13.1*	15.6**	12.3*
Riparian Quality/Erosion			
Riparian Width			
Wide/Moderate	12.0 NS	12.7 NS	4.7 NS
Narrow/None	17.8**	7.3 NS	3.8 NS
Adjacent Landuse			
Agriculture	3.2 NS	3.9 NS	3.6 NS
Forest/Shrub	10.8 NS	4.1 NS	9.4 NS
Urban/Park/Mining	_1	3.9 NS	10.2 NS
Bank Erosion			
None/Little	4.6 NS	6.2 NS	6.5 NS
Moderate/Severe	1	38.3***	10.2 NS

¹Insufficient data for statistical test.

Figure 5. Frequency histogram of the occurrence of important substrate and cover attributes by IBI range for Ohio "Warmater" and "Modified" headwater reference sites. Shading on bars denotes ecoregions except where noted differently. Vertical line of left side of charts represents an IBI of 50. The upper-right most chart represents the total frequency distribution of sites and, by percentage, would represent a random distribution of a habitat characters by IBI range.

Figure 6. Frequency histogram of the occurrence of important channel and pool/riffle attributes by IBI range for Ohio "Warmater" and "Modified" headwater reference sites. Shading on bars denotes ecoregions except where noted differently. Vertical line of left side of charts represents an IBI of 50. The upper-right most chart represents the total frequency distribution of sites and, by percentage, would represent a random distribution of a habitat characters by IBI range.

Figure 7. Frequency histogram of the occurrence of important substrate and cover attributes by IBI range for Ohio "Warmater" and "Modified" wading reference sites. Shading on bars denotes ecoregions except where noted differently. Vertical line of left side of charts represents an IBI of 50. The upper-right most chart represents the total frequency distribution of sites and, by percentage, would represent a random distribution of a habitat characters by IBI range.

Figure 8. Frequency histogram of the occurrence of important channel and pool/riffle attributes by IBI range for Ohio "Warmater" and "Modified" wading reference sites. Shading on bars denotes ecoregions except where noted differently. Vertical line of left side of charts represents an IBI of 50. The upper-right most chart represents the total frequency distribution of sites and, by percentage, would represent a random distribution of a habitat characters by IBI range.

Figure 9. Frequency histogram of the occurrence of important substrate and cover attributes by IBI range for Ohio "Warmater" and "Modified" boat reference sites. Shading on bars denotes ecoregions except where noted differently. Vertical line of left side of charts represents an IBI of 50. The upper-right most chart represents the total frequency distribution of sites and, by percentage, would represent a random distribution of a habitat characters by IBI range.

Figure 10. Frequency histogram of the occurrence of important channel and pool/riffle attributes by IBI range for Ohio "Warmater" and "Modified" boat reference sites. Shading on bars denotes ecoregions except where noted differently. Vertical line of left side of charts represents an IBI of 50. The upper-right most chart represents the total frequency distribution of sites and, by percentage, would represent a random distribution of a habitat characters by IBI range.

Substrate

In most cases where there was sufficient data, substrate was significantly correlated with the IBI (Table 4 and 5). Substrate was consistently most highly correlated in the Western Allegheny Plateau (WAP) regardless of sampler type. This ecoregion has perhaps the widest range of substrate quality in Ohio from high gradient boulder, cobble streams to low gradient streams severely impacted by silt, sand, and mine generated fines. Of the metric subcomponents, boulder and cobble at wading sites and cobble and gravel at boat sites were more often associated with higher IBI scores (Table 6, Figures 5, 7, and 9). Silt or muck, in contrast was strongly associated with lower IBI scores for all sampler types (Table 6, Figures 5, 7, and 9). Sites that may have had better underlying substrates but had heavy-moderate coverings of silt or that had highly to moderately embedded substrates also had lower IBI scores across all sampler types (Table 6, Figures 5, 7, and 9).

Substrate has been long known to be of importance to stream fishes (Trautman 1981). The influence of high quality substrates is probably related to their importance in providing food organisms (macroinvertebrates) to the insectivores and benthivores that typify midwest streams. Larger substrates are more stable and produce larger and longer lived taxa of macroinvertebrates, which are preferable food items, than fine grain, unstable substrates such as sand (de March 1976). Large substrates may also function as escape or winter cover.

Pool/Glide Quality

The pool metric, like the substrate metric, was usually positively correlated with the IBI. This metric was most consistently correlated with the IBI in the Erie Ontario Lake Plain (EOLP) and Eastern Corn Belt Plains (ECBP) (Table 5). Subcomponents of this metric include diversity of current types, maximum depth of pools, and pool morpholgy. Sites with fast currents, for all sampler types, had higher IBI scores than expected by chance (Table 6, Figures 6, 8, and 10). Fast currents flush fine particles from the substrate and acts as a constructive force for increasing habitat heterogenity. Generally, sites with fast current also have a higher diversity of current types (e.g., moderate current, slow current, and eddies).

Stream depth explained little in large rivers (Table 6, Figure 10) probably because most larger rivers in Ohio have at least 70 cm maximum depths. For wading streams (Figure 8) sites < 40 cm in depth were not observed with IBI scores > 40. High IBI scores do occur in sites with < 40 cm maximum depth in headwater streams (Figure 6, also see depth as cover: Figure 5) however there is insufficient data to test if this was different from expected. In headwater streams the presence of good flow and riffles could ameliorate some of the effects of shallow pools. Although eddies were usually associated with higher

IBI scores in headwater streams (Figure 6) data is too limited to test for significance.

Eddies generally are associated with good riffles and pools and good substrates and cover thus they should integrate many of the habitat characteristics found in good streams.

Channel Quality

Channel quality was usually positively correlated with the IBI (Table 4). This metric is comprised of measures of sinuosity, presence/absence of channel modification, pool/riffle development, and pool/riffle stability. Streams with little or no sinuosity were associated with lower IBI scores for all sampler types (Table 5 and 6, Figures 6, 8, and 10). Streams with little to no sinuosity often have higher levels of suspended sediments during low and moderate flow periods than more natural streams with higher sinuosity (Karr and Schlosser 1977). Further, streams with good sinuosity often have less erosion (Karr and Schlosser 1977) and are often associated with good pool/riffle development. As illustrated in Figures 6, 8, and 10 stream sites with only fair to poor riffle/pool development generally have lower IBI scores and sites with excellent to good development have higher IBI scores (Table 6). Streams with poor scores on the development subcomponent lack well developed pools or riffles and are often associated with stream channel modifications. Recently modified sites or sites that are still recovering from modification have lower IBI scores (Table 6, Figures 6, 8, and 10). However, in certain circumstances, where the stream in general has intact and diverse habitat, the effects of these modifications on the biota may be ameliorated. The fourth component of the channel quality metric, riffle/pool stability (not illustrated) shares similar negative trends with the other components: lower IBI scores with moderate to low channel stability (Table 6). The negative effects of channel modifications, which the components of this metric reflect, have been well documented in the fisheries literature (see Table 1). The magnitude of these activities, especially in headwater streams which serve as spawning areas, have been postulated as a major cause of a shift of many large river fish communities in the midwest from "dominance by insectivore and insectivore-piscivore fishes to omnivores and herbivore-detritivores" (Karr et al. 1983).

Instream Cover

Instream Cover was usually positively correlated with the IBI (Table 5). The amount of cover appeared to have more influence than the presence of any one cover type to attainment of higher IBI scores. Stream sites with sparse cover or cover nearly absent rarely had lower IBI scores for all sampler types (Table 6, Figures 5, 7, and 9). Lack of instream cover is often associated with channel modifications; in which cover is often regarded as an "impediment" to flow and removed. Removal of the riparian vegetation results in a decreased input of woody debris to the stream channel, perhaps the most

Figure 11. Three dimensional frequency histogram of the occurence of the number of cover types present at a stream site by IBI range. N = 471.

important source of cover in streams. Generally, sites with 3 or fewer cover types had lower IBI scores and sites with more than 3 were associated with higher IBI scores (Figure 11). Cover has been shown to be an important component of warmwater streams (Angermeier and Karr 1984) and may function as escape cover, a refuge from high flows, or may be important as a source of invertebrate production (Benke et al. 1984).

Riffle/Run Quality

Riffle/Run quality, as measured by QHEI, was less consistently correlated with the IBI than the above-mentioned metrics (Table 6). In headwater streams, the correlation was significant only in the ECBP ecoregion (Table 5). The occurrence of deep riffles (generally > 10 cm) was significantly associated with higher IBI scores in only boat sites (Table 6, Figure 10). Because boat sites may lack riffles the association of deep riffles with higher IBI scores may be related to the presence rather than the quality of the riffles per se (there are few shallow riffles at boat sites). Unstable and highly embedded substrates are associated with lower IBI values (Table 6) in wading and headwater sites (insufficient data for boat sites). Many of the attributes of high quality riffles are integrated in aspects of other metrics including such components as fast current, pool/riffle development, and eddies. Riffles function as critical habitat for rheophilic fish and macroinvertebrate species, however, even in modified streams some of the basic function and form of riffles exist to a limited degree in most Ohio streams.

Gradient

Stream gradient is an important influence on stream fish communities (see Table 1). For the ecoregions that occur in Ohio, stream gradient generally is not characterized by extreme values. In other areas of the country high gradients (up to 175 ft/mi) have much greater effects on fish species distributions (Leonard and Orth 1986; Miller et al. 1988). Very high gradients are largely limited to headwater streams. Low gradient streams or stream reaches, however, are found in all ecoregions with the Huron-Erie Lake Plain having, on average, the lowest gradient streams (Ohio DNR 1962). Scoring for stream gradient ranges was based on work done by Trautman (1942, 1981). Trautman (1981) classified Ohio streams as low, moderate, or high gradient on the basis of gradient in feet/mile and stream size measured as stream width. Because Ohio EPA relies on drainage area as a measurement of stream size we developed a relationship between stream width (m) and drainage area (sq mi) (Figure 12). Trautman's (1981) classifications were modified slightly and scores were assigned to categories of gradient and drainage area (Table 7) based on examination of plots of IBI versus stream gradient (Figure 13).

Table 7. Classification of stream gradients for Ohio, corrected for stream size. Modified from from Trautman (p 139, 1981). Scores were derived from plots of IBI versus the natural log of gradient for each stream size category.

Average Stream	Drainage	Gradient (ft/mile)						
Width (m)	Area (sq mi)	Very Low	Low	Low- Moderate	Moderate	Moderate High	High	Very High l
0.3-4.7	0-9.2	0-1,0	1.1-5.0	5.1-10.0	10.1-15.0	15.1-20	20.1-30	30.1-40
		2	4	6	8	10	1 0	8
4.8-9.2	9.2-41.6	0-1.0	1.1-3.0	3.1-6.0	6.1-12.0	12.1-18.0	18.0-30	30.1-40
		2	4	6	1 0	10	8	6
9.2-13.8	41.6-103.7	0-1.0	1,12.5	2.6-5.0	5.1-7.5	7,6-12.0	12.1-20	20.1-30
		2	4	6	8	1 0	8	6
13.9-30.6	103.7-622.9	0-1.0	1.1-2.0	2.1-4.0	4.1-6.0	6.1-10.0	10.1-15	15.1-25
		4	6	8	1 0	1 0	8	6
>30.6	>622.9	14	0-0.5	0.6-1.0	1.1-2.5	2.6-4.0	4.1-9.0	>9.0
			6	8	1 0	1 0	1.0	8

¹ Any site with a gradient > than the upper bound of the "very high" gradient classification is assigned a score of 4.

Gradient 'quality' as measured by QHEI, was somewhat less consistently correlated with the IBI than the substrate, cover, channel, or pool/riffle metrics (Table 5). Headwater streams show the poorest correlation between gradient score and the IBI (Table 5). The relationship between raw gradient values (ft/mi) and the IBI is better fit by a logarithmic relationship than a linear one when the data is examined by site type (r² values: headwater, log - 0.34, linear - 0.12; wading, log - 0.12, linear - 0.05, boat, log - 0.37, linear - 0.36). This logarithmic relationship was incorporated into the actual scoring, which was based on a "fit-by-eye" curvilinear threshold response of the IBI to natural log of gradient illustrated in Figure 13

Figure 12. Average stream widths (ft/mi) versus drainage area (sq mi) for Ohio streams.

Larger streams have, on average, larger potential energy (to move sediments, etc.) and gradient may be less important for maintaining habitat features than a small stream with a similar gradient. A 4 X 7 Contingency table analysis (Gradient Score vs IBI Range) showed that the frequency of occurrence of gradient scores was not random with respect to IBI Range (G statistic = 118, P < 0.0001). This is illustrated in Figure 13 where lower gradients are generally, but not universally, associated with lower IBI values and higher gradient scores with higher IBI values.

The effects of nonpoint pollution can be exacerbated or ameliorated by habitat characteristics. The low gradient in HELP streams increases the retention time of fine sediments that are deposited in the stream bed and the resulting bedload degrades spawning substrate, reduces stream depth heterogeneity (through aggradation), and buries cover. The high gradient WAP streams, in contrast, are less susceptible to nonpoint pollution because of the high transport capacity and short retention time of fine sediments, especially in riffle/run areas. These trends are reflected in the generally poor fish communities of the HELP ecoregion and good-excellent communities characteristic of the WAP.

Continued on next page

Figure 13. Scatter plots of stream gradient (ft/mi) by IBI for five different stream sizes as measured by drainage area, Lines superimposed on graphs were drawn by eye and represents an estimate of a threshold of the IBI for as given gradient.

Riparian Quality

Riparian quality was the metric least consistently correlated with the IBI of all the metrics examined (Table 4 & 5). The frequency occurrence of the subcomponents of this metric in relation to the IBI was not significantly different from random with the exception of the bank erosion submetric in wading sites (Table 6). The riparian component of the QHEI appears to have the weakest *direct* effect on the IBI. The indirect effects and the effects of the riparian zone at the scale of a basin or sub-basin is, however, likely to be large. The quality of the riparian zone has cumulative effects on cover availability (inputs of logs, woody debris), channel integrity, and direct effects of the energy dynamics of streams. Andrus *et al.* (1988) found that riparian trees must be left to grow longer than 50 years to ensure an adequate supply of woody debris for streams in Oregon. Because up to 70% of the pools in the study of Andrus *et al.*(1988) were formed by woody debris, poor management of the riparian forest can have far reaching effects on fish communities. Similar processes undoubtedly are important in Ohio streams.

On the basis of our analysis of average habitat quality discussed above and some of the important functions of riparian vegetation (stream temperature regulation and allocthonus energy inputs) this metric may be more important in its influence on general water quality conditions at a basin or sub-basin scale than in explaining site specific variation in the biota..

Using the QHEI to Assign Designated Uses

Figures 14-16 summarize the process used for assigning or changing designated aquatic life uses of Ohio streams. The ultimate arbiters of aquatic life use potential and attainment are the biocriteria (see Ohio EPA 1987b, c), which are direct measures of biotic integrity; if a stream achieves these criteria it, by definition, meets that specific use *regardless* of the QHEI performance. In many cases the biological data does not exist (especially for many unnamed small streams) or the biota is impaired so that the true potential has not been demonstrated. In these cases we must rely on a habitat evaluation and the QHEI to assign an aquatic life use.

Habitat data is collected from multiple sites in a stream when an aquatic life use is to be assigned or changed. For streams of > 3 square miles drainage area, the first step is to ascertain if there is extensive macro-habitat modification throughout major reaches of the stream (Figure 14). Uses are assigned by stream or stream segment and NOT by individual site. If there are no extensive modifications or other precluding factors (see below) the stream is usually classified Warmwater Habitat (WWH). Designation of a stream as Exceptional Warmwater Habitat (EWH) principally relies on direct evidence, from biosurvey data, that sufficient sites are attaining the EWH biocriteria. If biological data indicates that a stream cannot attain the Warmwater Habitat use because of natural conditions, alternative biocriteria can be developed (see Ohio EPA 1987b).

Types of Habitat Impacts

There are three broad classifications of habitat impacts that are commonly encountered in Ohio streams: channel modifications, impoundments, and non-acidic mine effects. Each of these habitat types is approached differently when designating aquatic life uses.

Procedure for Assigning Use Designations in Undesignated Headwater Streams (See Text for Specifics)

Procedure for Designating Aquatic Life Uses in (unassigned) Headwater Streams with QHEI Scores of < 60

Procedure For Examining Individual QHEI Metrics to Determine Likelihood of Attaining WWH in Headwater Streams

Figure 16. "Negative" habitat characteristics diagnostic of the MWH habitat use in Ohio streams. As stream reaches or stream basins accumulate these characters they are less able to support WWH fish communities. Conversely, the absence of these negative characters is diagnostic of WWH/EWH fish communities. See text for a more detailed discussion.

MWH (Mine affected)

Mine sediment effects are the most distinct of the habitat impact types. Mine affected streams often have similar or lower IBI scores compared to channel modified streams and impounded streams; however, their QHEI scores often approach that of unmodified streams (Figure 17)³. In these streams the sediment effects are so severe that they alone can limit the community, even with a high QHEI score. Examination of the individual habitat metrics in mine affected streams provides a characteristic pattern of low substrate scores (often lower than those in channelized or impounded streams), but high scores in other metrics such as channel quality and pool quality (Figure 18). As such the designation of the mine affected modified warmwater habitat use relies heavily on direct sampling of the biota. Assignment of the MWH use for mine affected areas also relies heavily on the identification of the sources of the sediment, extent of mine activity in the basin, and the relative prospects for reclamation in the near future. This use is most often applied to streams impacted and impaired below WWH by non-acidic mine runoff from abandoned mine lands where no reclamation activities are imminent.

MWH (Impoundments)

Assignment of the MWH for the impoundment related modification type is made in conjunction with biosurvey data, and is not based on QHEI alone. Candidates for this aquatic life use are typically long reaches of impounded river, not brief impoundments on otherwise free-flowing rivers. Obviously, impounded areas are too deep to be sampled with wading methods, thus biocriteria only exists for the boat sampling site type. Consistent failure to fully attain the WWH biocriteria in an extensively impounded stream reach may warrant the MWH use. Such habitats, however, often occur in areas affected by urban impacts such as combined sewers and general urban runoff. These external factors must also be evaluated when the MWH use is being considered. Attainment or near-attainment of the WWH use in these areas may be sufficient reason to retain that use for impoundments.

MWH (Channel Modification)

Channel modifications are the most common and extensive habitat perturbations to Ohio streams. However, the mere presence of channel modification is insufficient reason for assigning the MWH use. The considerations prior to assigning the MWH aquatic life use are outlined below.

 The MWH designation is reserved for extensively modified stream segments or sub-basins. The MWH use is not intended to be applied in patchwork

³Note the outliers in the unmodified reference data (low IBI scores and low QHEI scores) in Figure 17.

These outliers are largely HELP reference sites that have poor habitat and do not meet the definition of "relatively unimpacted" associated with the other ecoregions. See Ohio EPA (1987b) for more information.

Figure 17. Box and Whisker Plots (medians, 25th and 75th percentiles, maximum value, minimum value, and outliers > two interquartile ranges from the median) from modified reference sites with channel modifications, impoundments, and mine affects (crosshatched) and warmwater reference sites for the IBI (top panel) and QHEI (bottom panel).

Figure 18. Box and Whisker Plots (medians, 25th and 75th percentiles, maximum value, minimum value, and outliers > two interquartile ranges from the median) for metric scores from modified reference sites with channel modifications (C), impoundments (I), and mine affects (A, crosshatched) and warmwater reference sites (N). The maximum score possible is 20 for channel and substrate quality and 12 for pool quality.

fashion in a stream or river. The previous analyses on the average habitat quality in a basin illustrated the ability for isolated areas of degraded habitat within a basin with generally good or high quality habitat to support a WWH or even EWH biological community. The MWH use is reserved for the converse of this situation: streams where average habitat quality is poor and unlikely to attain a WWH aquatic life use.

2) The stream or basin must be under approved channel maintenance sanctioned by the Soil Conservation Service (SCS) or County Engineer and have 401/404 approval -OR- show no evidence of biological recovery over an extended period of time (i.e., 50-100 years). Modified streams often have the ability to regain their natural habitat characteristics. Habitat characteristics of streams in a region (e.g., ecoregion) are the result of interacting variables such as gradient, lithology, rainfall, land use, etc.; such variables are modified, but not eliminated during channel modifications. With no further modifications the stream channel will progress through a physical "successional" process and eventually resemble the stream prior to modification. Where streams have been channelized, and flow and gradient is sufficient, channel characteristics can often recover some of their function within a few years. Other streams, especially those with low gradients, can take many years to regain the habitat functions lost

during modification; some may never recover their original habitat. Thus the MWH use is reserved for streams that are not likely to recover within 50-100 years, or, are kept in a habitat-poor "successional" stage by approved maintenance activities. These activities are generally overseen by a county engineer or SCS agent for flood control and agricultural purposes (drainage) and have received approval via the 401/404 process. In the process of determining an aquatic life use Ohio EPA will contact the county SWCD, county engineer, or other appropriate agency to ascertain the extent and history of existing channel modifications and to determine whether there are existing maintenance activities.

3) Stream recovery potential must be considered, especially in relation to stream gradient, to determine if the MWH definition of "irretrievable anthropogenic modification" is met. As discussed above, it is necessary to determine whether a stream can recover from modifications or is essentially "irretrievably modified". Such a classification is related to the intrinsic ability of a stream to reconstruct habitat naturally. Our experience suggests that streams with gradients of 5-6 ft/mi or greater are likely to recover habitat that would support a WWH community⁴; streams with gradients < 5 ft/mi will be very slow to recover, or may not recover at all, essentially resulting in an "irretrievable anthropogenic modification", a key criterion for changing a use to MWH.

It must be made clear that the above points refer to existing channelization in Ohio. The MWH use is in no way to be used to permit the modification of a stream or river that is currently attaining the WWH (and certainly the EWH) use. Ohio EPA's antidegradation policy prohibits activities that result in a reduction of a stream's ability to attain its current level of performance or, at a minimum, its current use..

LRW Aquatic Life Use.

The Limited Resource Water (LRW) aquatic life use is reserved for streams with extremely limited physical habitat that cannot be expected to even attain the MWH biocriteria. Limited Resource Waters have:

"extremely limited physical habitat due to natural limitations or extreme alterations of anthropogenic origin. An example of the former are small ephemeral streams with drainage areas less than three sq. mi. An example of the latter are streams affected by chronic acid runoff from surface mines with sustained pH values less than 4.1 S.U. or severe streambed sedimentation. As a result of severe habitat limitations LRW are not able to attain even the MWH biological criteria outside of areas of chemical pollution. QHEI alone may be sufficient to determine the appropriateness of the LRW designation if the score is less than the 25th percentile of the MWH headwater reference sites." (Ohio EPA 1987b).

⁴Streams with > 5-6 ft/mile are likely to recover enough habitat characteristics to achieve the baseline WWH biocriteria; less information is available on the time frame necessary to fully recover all past habitat characteristics.

The 25th percentile of the QHEI for modified reference sites is 32. Streams less than 3 sq mi that have QHEI scores less than 32 would be strong candidates to be classified as LRW. Streams with greater than 3 sq mi drainage area and without other factors severely limiting aquatic life (e.g., low pH) are generally able to attain a more protective use than LRW even with modifications. Extreme modifications, however, (e.g., concrete channels, etc.,) may warrant consideration of LRW in these streams.

Using the QHEI in the Use Designation Process

Plots of the IBI for ranges of the QHEI results in overlapping ranges of QHEI scores that are useful to the aquatic life use designation decision process: <45, 46-60, and > 60 (Figure 19). From figure 18 it is clear that QHEI scores < 45 are usually associated with streams that do not attain the WWH biocriteria and QHEI scores of > 60 usually do achieve the WWH or EWH biocriteria. QHEI scores intermediate to this may fall into the range of the MWH or WWH biocriteria depending on what habitat characteristics appear to be limiting to aquatic life. This intermediate range is wide because such sites are found both in basins with generally good and generally poor habitat; this increases the range in the observed IBI scores. In contrast sites with extreme QHEI scores (high or low) are less likely found in streams of the opposite range of habitat quality. Thus, the average habitat in a basin or homogeneous stream reach is important to the designation of aquatic life uses.

Figure 19. Frequency curves of the IBI for sites with QHEI scores > 60, 46-60, and ≤ 45.

Stream reaches with QHEI scores averaging > 60 will likely have the potential to attain the WWH use. With QHEI scores > 60 the effects of any stream modification are usually not

severe and many of the natural characteristics of stream still exist. Also, it is likely that any past habitat degradation will recover with time in such areas. Streams with QHEI scores averaging < 45 have modifications that are generally severe and widespread. Often channel modifications are maintained or flow and stream gradient are very low so that more natural conditions do no readily reappear. Note that we are talking about stream-wide habitat conditions and not a site-specific situation. Average habitat quality in a homogeneous reach is most important to assigning and evaluating aquatic life uses. For example the Kokosing River had a mean QHEI of 77 among 16 sites. An outlier site had a QHEI of 37 but still had a near exceptional IBI score - this is why multiple locations and the general habitat quality must be considered (see Figure 4).

Designation of uses is most difficult for streams with QHEI values intermediate (45-60) to the low and high range scores discussed above and where direct estimates of biological performance is lacking or WWH use attainment is precluded by other factors. In these situations specific characteristics of the stream which may (or may not) limit a use are considered. Other information is also examined such as biological data from nearby streams with similar modifications if such information exists.

Table 8 summarizes some of the habitat characteristics of Modified Warmwater streams and Warmwater streams; superscripts and print style in Table 8 refer to the influence of the

Table 8. Habitat Characteristics of Modified Warmwater Streams and Warmwater Streams in Ohio. Superscripts for MWH streams refer to the influence of a particular characteristic in determining the use (1-high influence, 2-moderate influence). Characteristics apply to all ecoregions and types unless otherwise noted.

Modified Warmwater Streams	Warmwater Streams
1. Recent channelization 1 or recovering 2	No channelization or recovered
 Silt/muck substrates¹ or heavy to mod. silt covering other substrates² 	2. Boulder, cobble, or gravel
3.Sand subtrates2-Boat, Hardpan origin2	3. Silt Free
4. Fair-Poor Development ²	4. Good-Excellent Development
Low-No sinuosity 2,1-Headwater	5. Moderate-High Sinuosity
 Only 1-2 cover types², Cover sparse to none¹ 	6. Cover extensive to moderate
7. Intermittent or interstitial 2-with poor pools	7. Fast Current, Eddies
8. Lack of fast current ²	8. Low-normal substrate embeddedness
Max. depth < 401-Wading,2-Headwater	9. Max. depth > 40
10. High embeddedness of substrates ²	10. Low/No embeddedness

characteristics to these streams (1-high influence (bold type), 2-moderate influence (normal type). Streams with QHEI scores between 45-60 should have several of the primary factors to be considered for MWH status.

As streams accumulate more of the negative characteristics listed in Table 8, especially those characterized as having a high influence on the biota, the biologist should be more likely to classify a stream as MWH. A stream with fewer of these characteristics, or with a number of the distinctive WWH characteristics will be more likely classified as at least WWH. Figure 16 summarizes this process.

Case Examples of the Use of the QHEI for assigning and evaluating aquatic life uses.

This section will discuss three case examples of how the QHEI has proved useful in assigning aquatic life uses or evaluating aquatic life use attainment.

Hurford Run

Hurford Run illustrates a situation where three aquatic life uses, LRW, MWH, and WWH, were designated within the same stream. Hurford Run (drainage area 7 sq mi at its confluence with Nimishillen Creek) flows through a heavily industrialized area in Canton, Ohio and its fish and macroinvertebrate communities are severely impaired by chemical and physical impacts. Major industrial point sources discharge directly to Hurford Run or its major tributary, Domer Ditch. The entire stream has been modified at some time with most of the middle section re-channelized within the past two years. The lower mile had been channelized, but has sufficient gradient and has recovered many of the channel characteristics of a more natural headwater stream. Figure 20 summarizes the important biological and physical characteristics of the stream. Table 9 summarizes important QHEI components by stream segment.

Table 9 - Habitat Characteristics of the three aquatic life use segments found in Hurford Run. Characteristics associated with MWH or LRW are boldface.

LRW Upper Segment RM 1.8-3.0	MWH Middle Segment RM 1.1-1.7	WWH Lower Segment RM 0.0-1.0
Drainage Area < 3 sq mi	Drainage Area > 3 sq mi	Drainage Area > 3 sq mi
Silt/Muck Substrates 1	Sandy Substrates	Cobble Substrates
Poor Development ²	Poor/Fair Development2	Good/Excellent Developmen
No Sinuosity ¹	Low/No Sinuosity ¹	Low/Moderate Sinuosity I
Cover Sparse to None1	Cover Sparse ¹	Cover Moderate
No fast current ²	Fast Current	Fast Current
Recent Channelization 1	Recent Channelization1	Recovering from
		Channelization2
Max Depth < 40 cm ²	Max Depth > 40 cm	Max Depth > 40 cm
Substrates Highly	Substrates Highly	Substrates Moderate to Low
Embedded ²	Embedded ²	Embeddedness

The extreme small size of Hurford Run in the upper segment, the industrialized nature of the land use, and the poor habitat that is periodically modified qualify this section of stream as a limited resource water aquatic life use.

Figure 20. Longitudinal plot of the IBI (closed circles) and QHEI (open circles) versus river mile for Hurford Run, near Canton, Ohio. Graph of drainage area (sq mi) is inset on the plot for reference

The middle stretch although modified is larger, has adequate flow (Domer Ditch a WWH stream enters at the upstream end of this stretch) and sufficient habitat diversity to support a biological community characteristic of the MWH use. The periodic channel maintenance and relatively fine-particle substrates preclude a WWH biological community for the forseeable future. Maintenance of a modification and the likelihood of reverting to a WWH stream in the near future is critical to the designation of the MWH use. If this stretch had showed a tendency to recover quickly and would not be modified again a WWH aquatic life use may have been considered.

The downstream-most stretch, although modified at one time has good substrate, pool depth, pool/riffle development, and current diversity to support a warmwater community found in a headwater stream. It also has sufficient gradient to allow the recovery process to occur at a relatively rapid pace.

Twin Creek

Twin Creek is an example of where QHEI data was ancillary to biosurvey data in assigning an aquatic life use (EWH) but was used to interpret changes in the fish community in a longitudinal analysis of the data. Figure 21 summarizes the important biological and physical characteristics of the stream. The fish (IBI) and macroinvertebrate indices (ICI), clearly attain or nearly attain the exceptional range of the biocriteria (Figure 21). The QHEI scores (average QHEI = 77, range 51-90) indicate excellent habitat, the likely origin of the EWH attainment. . Several short sections, however had somewhat lower IBI and ICI scores than the average (Figure 21).

Figure 21. Longitudinal plot of the IBI (closed circles) and QHEI (open circles) versus river mile for Twin Creek from Lewisburg to Germantown, Ohio. Labeled segments are discussed in text.

The section labeled A in Figure 21 is the upstream most area sampled. Here the stream is much smaller (drainage area < 42 sq mi) and is impacted by agricultural nonpoint sources. Section B is a small stretch impacted by a combination of WWTP effluent and agricultural rowcrop encroachment on the riparian zone. An increased bedload of sand and silt resulting in some embedded substrates were obvious here. Section C was downstream of a WWTP, however most of the suppresion of the IBI was related to the impounded nature of this site and for 0.3 miles downstream. Section D showed no depression of the IBI even at a site with a relatively low QHEI. The lower twenty miles of Twin Creek however was nearly continuous good-excellent habitat and the community was not affected by a short stretch of habitat of somewhat lower quality.

West Branch Nimishillen Creek/Nimishillen Creek

This area illustrates the importance of considering aquatic life potential on the basis of habitat when examining attainment status in rivers. In Nimishillen Creek the QHEI data was critical in identifying and delineating a impaired section of the stream. The West Branch of Nimishillen Creek has poor habitat throughout the section we sampled (RM 0 to 5.8 Table 10, Figure 22). As it flows through urban Canton it is characterized by sandy substrates and broad shallow glides (Table 10). Nimishillen Creek in contrast has cobble substrates and excellent riffle/pool development with good variation in depth and current, especially as it leaves the urban area of Canton downstream of the confluence of the West Branch.

Figure 22. Longitudinal plot of the IBI (closed circles) and QHEI (open circles) versus river mile for Nimishillen Creek and the West Branch Nimishillen Creek at Canton, Ohio.

The IBI in Nimishillen Creek decreased downstream of the confluence of the West Branch (Figure 22) where it should have increased with the improvement in habitat and distance from urban impacts (storm sewers, runoff). This observation resulted in additional sampling in the West Branch were a galvanizing plant without a discharge permit was found to impair 16 miles of Nimishillen Creek with periodic leaching and/or discharge of acid, zinc, and lead. Table 10 summarizes the major shifts in habitat quality between the West Branch Nimishillen Creek and Nimishillen Creek.

Table 10. Major habitat characteristics of six sampling locations in the West Branch Nimishillen Creek and four sampling locations in Nimishillen Creek downstream of the West Branch confluence.

West Branch Nimishille Creek RM's 5.8, 3.2, 1.6, 0.8, 0.5, 0.1	Nimishillen Creek RM's 11.7,11.1, 10.2, 8.9
Recovering from Channelization ² Sand Substrates	No or Minor Channelization Cobble Substrates
Poor-Fair Development ²	Good-Excellent Development
No-Low Sinuosity ² Sparse-Moderate Cover Moderate Current-No Eddies Substrate Extensively or	Moderate Sinuosity Moderate Cover Moderate & Fast Current - Eddies Substrate No-Low Embeddedness
Moderately Embedded ² Maxiumum Depth < 70 cm	Maximum Depth > 100 cm

QHEI Variability

An estimate of investigator variability was obtained by having two different biologists independently score the QHEI for the same locations; temporal variability was estimated by having the same biologist score the QHEI on different occasions. In 1985 Twin Creek was scored (with the OLD QHEI) at 15 locations (each location at two different times) by two biologists from the Ohio EPA (Table 11). A two-tailed paired t-test showed no significant difference in the final QHEI scores or in 4 of the 6 individual metric scores on one occasion and 6 of 6 metrics on the second ocasion (Table 11) significance at P >0.05). The one metric that showed a difference was the riffle metric which in this form of the QHEI ranged in score from 0-5. The scoring difference averaged less than one point but one biologist accounted for the higher score in 9 of 10 locations. In general, even in those instances where investigator or temporal differences were statistically significant, the differences are minor in a biological sense (i.e., based on expected effects on fish communities) and in the degree of resolution we expect from the index.

Table 11. Comparison of QHEI scoring (overall and individual metrics) between two biologists and between two different occasions for 15 locations on Twin Creek sampled during June-August of 1986. An asterisk denotes significance for a two-tailed paired t-test at P < 0.05)

Metric	ď	Mean difference	P	Signifi- cance
	Comp	parison Between Sampling	g Dates	
		Biologist 1		
Substrate	14	0.13	0.73	NS
Cover	14	-0.40	0.36	NS
Channel .	14	0.40	0.03	142
Riparian	14	0.37	• 0.30	NS
Pool	14	0.20	0.57	NS
Riffle	14	0.60	0.01	14.2
		Biologist 2	0.01	770
Substrate	14	0.40	0.33	NS
Cover	14	-0.87	0.15	NS NS
Channel	14	0.00	0.13	
Riparian	14	0.93	0.01	NS *
Pool	14	-0.47	0.17	
Riffle	14	0.20	0.17	NS
				NS
	Cor	mparison Between Biolog	ists	
22002000 POTO		Time Period 1		
Substrate	14	0.20	0.55	NS
Cover	14	-0.53	0.28	NS
Channel	14	0.80	0.02	*
Riparian	14	0.33	0.18	NS
Pool	14	0.20	0.53	NS
Riffle	14	0.53	0.01	
		Time Period 2		
Substrate	14	0.07	0.90	NS
Cover	14	-1.00	0.07	NS
Channel	14	0.40	0.27	NS
Riparian	14	0.90	0.06	NS
Pool	14	0.47	0.09	NS
Riffle	14	0.13	0.33	NS

Utility of the QHEI and Some Cautions and Limitations

Habitat is of critical importance to understanding biological community processes in streams and a reliable method to assess its quality is essential to any water resource program. The QHEI is designed to fill a void between completely subjective habitat assessments and more intensive habitat assessment efforts that rely on more resource intensive, quantitative methods. It performs best when the objective of its use is assigning aquatic life use designations or examining aquatic life use attainment in conjuction with the IBI or other community level indices.

Because of its qualitative format it may have less utility as a *predictor* of single species standing stocks (often the response variable of interest to resource managers) than more quantitative methods. For such purposes, however, it may prove a useful screening tool and a inexpensive measure of regional variation in habitat quality that is often not included in single species models (Layher and Maughan 1985). Another area where it might be useful is in the analyses of the habitat requirements of non-game species where little autoecological data is available but large scale survey databases exist or are being collected (Bond *et al.* 1988).

Recently, the U. S. Fish and Wildlife Service (USFWS) published guidelines for determining the effects of oil and hazardous substances on fish and wildlife habitat (Escherich and Rosenberger 1987) for use in conjunction with the natural resource damage assessment rules promulgated under section 301(c) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The USFWS (Escherich and Rosenberger 1987) outline the utility Habitat Evaluation Procedures and Habitat Suitability Indices in these procedures as:

.."(1) establish that assessment and contol are habitats are similar to pre-release conditions in the assessment area and that observed species changes (e.g., diminished population numbers) are not likely due to habitat differences; (2) quantify changes in habitat resulting from a release of oil or hazardous subtances; (3) determine changes in habitat unit availability caused by a discharge or a release; (4) provide a replicable and quantitative basis for determining the cost of restoring sites to attain habitat conditions present prior to release of oil or hazardous substances; and (5) provide a replicable and quantitative basis for determining the cost of achieving appropriate replacement for the lost habitat value of affected areas that cannot be restored to acheive in-kind, equal or relative habitat replacement..."

Where biological community indices replace species specific measures as a basis of a resource damage claim the QHEI may have utility in many of the areas outlined above. Further testing needs to be done to assess the applicability and limitations of the QHEI in these circumstances.

QHEI scores should not be "reified" in a rigid framework of a "criteria"; this index was designed to be explanatory and not predictive *per se*, especially with regard to site-specific QHEI scores. Aquatic life use potential is determined by a combination of basin-wide and site-specific conditions including habitat structure, chemical and physical characteristics (e.g., temperature), energy dynamics, flow regime, and biotic interactions (see Figure 1 of Ohio EPA 1987a). The biota integrates all these factors, whereas, the QHEI only reflects one of these components directly. Any attempt to rely on a strictly predictive relationship between the QHEI and IBI is ignoring the power of an integrated approach to water resource management. In performing simple, low risk, water resource tasks such as designating uses in small headwater streams habitat data alone can be reliably used. An experienced biologist needs to carry out such an assessment, however, to recognize exceptions to typical conditions. Because the QHEI relies on specific definitions of habitat characteristics (see Appendix 1) regular training is a necessity to ensure comparability among biologist in assessments and decision making.

An important result of this study is the relationship between habitat and fish communities in streams with poor habitat. A hypothetical relationship between habitat quality and fish communities is a sigmoidal curve (Plafkin *et al.*1989). Such a hypothetical curve is superimposed on the data used in this study at boat sites (Figure 23) with the exponential relationship discussed earlier also illustrated. The axis have been standardized to the percent of the maximum IBI and percent of maximum QHEI to reflect the graph in Plafkin (1989). Overall, the sigmoidal relationship fits the data well. A major inconsistency, however, is at the lowest IBI and QHEI scores. The actual data descends below an IBI of 20 only once (Figure 23). The sigmoidal curve, however, predicts continued impact to the community, rather than the leveling off of the effects of habitat observed here. Some types of habitat impacs could result in continued degradation (e.g., dewatering), however for the typical modifications observed in Ohio (e.g., channelization) the effects of habitat level off. This has application for distinguishing types of impacts in Ohio; the most severe impacts (IBI scores < 20) are rarely caused by habitat alone.

Figure 23. Standardized IBI versus standardized QHEI scores (% of maximum score) for boat data from Ohio warmwater reference and modified warmwater reference sites. Sigmoid curve superimposed on graph is based on Figure 8.1-1 of Plafkin et al. (1989). Expontial curve was calculated from the data.

Information generated by the analyses outlined here not only need to be incorporated into water resource management agencies but integrated into their regulatory decision making process. In water resource regulatory programs across the country traditional water quality chemistry approaches have dominated water resource programs and habitat problems have received little attention. It makes little sense to "protect" the biota by mandating multimillion dollar improvements to a point source discharge while the important biological uses are impaired by habitat modifications for reasons such as "flood-control", construction activities, or waterway improvements. Water resource management as well as water resource assessments need to be broad-based and integrated.

- Alexander, G. R. 1986. Sand bed laod in a brook trout stream. North American Journal of Fisheries Management 6: 9-23.
- Andrus, C. W., B. A. Long, and H. A. Froehlich. 1988. Woody debris and its contribution to pool formation in a coastal stream 50 years after logging. Canadian Journal of Fisheries and Aquatic Science 45:2080-2086
- Angermeier, P. L. and J. R. Karr. 1984. Relationships between woody debris and fish habitat in a small warmwater stream. Transactions of the American Fishery Society 113:716-726.
- Benke, A. C. and others. 1984. Invertebrate productivity in a subtropical black water river: the importance of habitat and life history. Ecological Monographs 54: 25-63.
- Benke, A. C. and others. 1985. Importance of snag habitat for animal production in Southeastern streams. Fisheries 10(5): 8-13.
- Berkman, H. E. and C. F. Rabeni. 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18:285-294.
- Binns, N. A. and F. M. Eiserman. 1979. Quantification of fluvial trout habitat in Wyoming. Transactions of the American Fishery Society 108(3):215-228.
- Bond, C. E., E. Rexstad, and R. M. Hughes. 1988. Habitat use by twenty-five common species of Oregon freshwater fishes. Northwest Science 62(5): 223-232.
- de March, B. G. E. 1976. Spatial and temporal patterns in macrobenthic stream diversity. Journal of the Fisheries Research Board of Canada 33: 1261-1270.
- Emerson, J. W. 1971. Channelization: A case study. Science 173:325-326.
- Escherich, P. and D. Rosenberger. 1987. Type B technical information document: Guidance on use of habitat evaluation procedures and habitat suitability index models for CERCLA applications. U. S. Fish and Wildlife Service, Division of Ecological Services, Washington, DC, 40 pp.
- Fausch, K. D., J. R. Karr, and P. R. Yant. 1984. Regional application of an index of biotic integrity based on stream fish communities. Transactions of the American Fishery Society 113:39-55.
- Gorman, O. T. and J. R. Karr. 1978. Habitat structure and stream fish communities. Ecology 59:507-515.
- Griswold, B. L. and others. 1978. Some effects of stream channelization on fish populations, macroinvertebrates, and fishing in Ohio and Indiana. Biological Report FWS/OBS-77/46, 64 pp. U.S. Department of the Interior, Fish and Wildlife Service.
- Hocutt, C. H. and J. R. Stauffer. 1975. Influence of gradient on the distribution of fishes in Conowingo Creek, Maryland and Pennsylvania. Chesapeake Science 16 1 143-147.
- Hughes, R. M. and J. M. Omernik. 1981. A proposed approach to determine regional patterns in aquatic systems. Pages 92-102 in Acquisition and Utilization of Aquatic Habitat Inventory Information, Neil B. Armantrout, editor.
- Karr. J. R. 1981. Assessment of biotic integrity using fish communities. Fisheries 6:21-27.
- Karr, J. R. and I. J. Schlosser. 1977. Impact of nearstream vegetation and stream morphology on water quality and stream biota. USEPA, EPA-600/3-77-097, 90 pp. .

- Karr, J. L., L. A. Toth, and G. D. Garman. 1983. Habitat preservation for midwest stream fishes: principles and guidelines. U. S. Environmental Agency, Corvallis, OR. EPA-600/3-83-006. 120 pp.
- Karr, J. L., P. L. Angermeier, and I. J. Schlosser. 1983. Habitat structure and fish communities of warmwater streams. U. S. Environmental Agency, Corvallis, OR. EPA-600/D-83-094.
- Karr, J. R., K. D. Fausch, P. L. Angermeier. P. R. Yant, and I. J. Schlosser. 1986. Assessing biological integrity in running waters: A method and its rationale. Illinois Natual History Survey Special Publication No. 5, 28 pp. Champaign, Illinois
- Larsen, D. P. and others. 1986. Correspondence betweeen spatial patterns in fish assemblage in Ohio streams and ecoregions. Environmental Management 10: 815-828.
- Layher, W. G. and O. E. Maughan. 1985. Relations between habitat variables and channel catfish populations in prairie streams. Transactions of the American Fishery Society 114(6): 771-781.
- Leonard, P. M. and D. J. Orth. 1986. Application and testing of an index of biotic integrity in small, coolwater streams. Transactions of the American Fishery Society 115: 401-414.
- Lewin, R. 1989. Sources and sinks complicate ecology. Science 243: 477-478.
- Lyons, J. and C. C. Courtney, in press. A review of fisheries habitat improvement projects in warmwater streams, with recommendations for Wisconsin. Bureau of Research, Wisconsin Department of Natural Resources
- Marzolf, G. R. 1978. The potential effects of clearing and snagging on stream ecosystems. U.S. Department of the Interior, Fish and Wildlife Service. FWS/OBS-78/74, 32 pp.
- Miller, D. L. and others. 1988. Regional applications of an index of biotic integrity for use in water resource management. Fisheries 5:12-20.
- Minshall, G. W. and others. 1985. Developments in stream ecosystem theory. Canadian Journal of Fisheries and Aquatic Science 42:1045-1055
- Ohio Environmental Protection Agency. 1987a. Biological criteria for the protection of aquatic life:

 Volume III. Standardized biological field sampling and laboratory methods for assessing fish
 and macroinvertebrate communities. Ohio Environmental Protection Agency, Columbus,
 Ohio, USA
- Ohio Environmental Protection Agency, 1987b. Biological criteria for the protection of aquatic life: Volume II, User's Manual for the biological assessment of Ohio surface water. Ohio Environmental Protection Agency, Columbus, Ohio, USA
- Ohio Environmental Protection Agency. 1987c. Biological criteria for the protection of aquatic life: Volume I:. The role of biological data in water quality assessments. Ohio Environmental Protection Agency, Columbus, Ohio, USA
- Ohio Environmental Protection Agency. 1989. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Ohio Environmental Protection Agency, Columbus, Ohio, USA (Revision of 1987 reference).
- Plafkin, J. L. and others. 1989. Rapid Bloassessment protocols for use in streams and rivers. U. S. EPA., EPA/444/4-89-001

- Platts, W. S., W. F. Megahan, and G. W. Minshall. 1983. Methods for evaluating stream, riparian, and biotic conditions. U. S. Department of Agriculture, Forest Service, General Technical Report. INT-138. 70 pp.
- Portt, C. B., E. K. Balon, and D. L. G. Noakes. 1986. Biomass and production of fishes in natural and channelized streams. Canadian Journal of Fisheries and Aquatic Sciences 43:1926-1934.
- Pulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist 132(5): 652-661.
- Schlosser, I. J. 1982a. Trophic structure, reproductive success, and growth rate of fishes in a natural and modified headwater stream. Canadian Journal of Fisheries and Aquatic Sciences 39:968-978.
- Schlosser, I. J. 1982b. Fish community structure and function along two habitat gradients in a headwater stream. Ecological Monograph 52:395-414.
- Schlosser, I. J. 1987a. A conceptual framework for fish communities in headwater streams. in W. J. Matthews and D. C. Heins (editors). Community and Evolutionary Ecology of North American Stream Fishes. Oklahoma University Press, Norman, Oklahoma.
- Schlosser, I, J. 1987b. The role of predation in age- and size-related habitat use by stream fishes. Ecology 68 3: 651-659.
- Schlosser, I. J. and J. R. Karr. 1981a. Riparian Vegetation and channel morpholgy impact on spatial patterns of water quality in agricultural watersheds. Environmental Management 5: 233-243
- Schlosser, I. J., and J. R. Karr. 1981b. Water Quality in agricultural watersheds: Impact of riparian vegetation during base flow. Water Resources Bulletin 17: 233-240.
- Terrel, J. W. editor. 1984. Proceedings of a workshop on fish habitat suitability models. Western Energy Land Use Team, U. S. Department of the Interior, Biological Report 85(6), 393 pp.
- Trautman, M. B. 1939. The effects of man-made modifications on the fish fauna in LOst and Gordon Creeks, Ohio between 1887-1938. Ohio Journal of Science 39(5): 275-288.
- Trautman, M. B. 1942. Fish distribution and abundance correlated with stream gradients as a consideration in stocking programs. Transactions of the 7th North American Wildlife Conference 7: 211-224
- Trautman, M. B. 1981. The fishes of Ohio. The Ohio State University Press, Columbus, Ohio, USA, 782 pp.
- Trautman, M. B. and D. K. Gartman. 1974. Re-evaluation of the effects of man-made modifications on Gordon Creek between 1887 and 1973 and especially as regards its fish fauna. Ohio Journal of Science 74 3: 162-173.
- Vannote, R. L., and others. 1980. The river continuum concept. Canadian Journal of Fisheries and Aquatic Science 37: 130-137
- Whittier, T. R. and others. 1987. The Ohio stream regionalization project: A compendium of results. USEPA, EPA/600/3-87/025, 66 pp.
- Winger, P. V. 1981. Physical and chemical characteristics of warmwater streams: A review. pp. 32-44 In L. A. Krumholz, editor. The warmwater streams symposium. American Fisheries Society, Bethesda, Maryland, USA.

Appendix 1a. Ohio headwater "warmwater" and "modified" reference sites used in analyses of the QHEI.

River Mile	QHEI	IBI	Species	Drainage Area (sq mi)	Modification
		Huron	Erie Lake	Plain	
04-114 - SOUTH POV	WELL CREEK				
14.1 04-131 - PRAIRIE (42	23	8	4.0	Channelization
18.1	30	23	11	18.0	Channelization
04-137 - HAGERMAN 0.8	31	19	5	14.0	Channelization
04-207 - LEATHERW 1.6	OOD DITCH 24	24	9	10.0	None
04-614 - BRUSH CRI	EEK				
19.1 05-053 - LITTLE RA	43 ACCOON CREEI	23	10	17.0	Channelization
4.3 05-058 - CASWELL I	55 5770H	25	5	1.2	None
0.5	44	26	6	5.0	None
05-219 - MUDDY CRE 37.3	68	26	12	4.0	None
05-223 - GRIES DIT 0.9	CH 60	20	9	15.0	None
		Inter	ior Plateau		111111111111111111111111111111111111111
00 500 - pomar por			101 1100000		
02-530 - ROCKY FOR			0.1	4.4. 8	**
23.3	65	57	24	14.0	None
02-585 - MOBERLY E				0.5	
0.9 10-211 - LICK CREE	64 7K	49	15	2.5	None
4.1	73	44	12	8.0	None
10-212 - TREBOR RU 0.1	JN 73	58	16	7.0	None
10-213 - CAVE RUN					
0.2	64	58	15	3.7	None
10-215 - LOUISE TE					
0.2	71	42	15	7.5	None
2.8	72	40	15	2.5	None
10-216 - LITTLE EA					
0.9 11-021 - TURTLE CE	58	42	12	9.6	None
6.3	69	36	19	18.0	None
11-022 - DRY RUN	67	40	10	E 0	News
1.8 11-138 - FIVEMILE		40	10	5.0	None
0.4	72	36	16	10.0	None
23-005 - SHARON CI		30	10	10.0	none
CO-COO - DIMINUN CI	71	38	10	1.7	None

Appendix 1a. Ohio headwater "warmwater" and "modified" reference sites used in analyses of the QHEI.

Rive	er Mile	QHEI	IBI	Spanion	Drainage	W 11.01
		QILLI	TDI.	Species	Area (sq mi)	Modification
			Erie	Ontario Lake	e Plain	
1-420	- MUDDY PR	ATRIE RIN				
	0.7	83	41	12	11.0	Mana
3-022	- BAUGHMAN		41	12	11.0	None
	3.0	72	38	20	19.0	None
7-007	- COWLES C	OCE-SON VIVIEW	50	20	13.0	None
	7.2	60	42	12	6.0	None
8-118		TATELINE CRE			0.0	None
	0.1	65	47	6	1.5	None
8-205	- STONE MI		200		1.0	None
	2.0	78	46	14	8.0	None
8-206	- E. BR. M	. FK. LITTLE			0.0	TYONG
	3.0	66	43	20	15.0	None
3-100	- E. BR. R			(0.2 7)	1010	110110
	26.7	66	48	17	12.0	None
3-104	- HEALY CR	EEK				
	0.8	62	37	12	4.5	None
3-200	- W. BR. R					1.0110
	33.6	67	40	21	8.0	None
5-012	- TRIB. TO	CHAGRIN RIV	ER.			
	0.2	74	48	12	1.7	None
7-184	- LITTLE K	ILLBUCK CREE		3.74	5.30	
	0.8	66	36	10	20.0	None
7-190	- CAMEL CR			15.6		1010000
	3.8	72	44	15	9.5	None
7 - 210	- ROCKY FO	RK LICKING F	RIVER	(P)(0)	1575,0077	30,000,000
	16.0	75	44	25	20.0	None
7 - 211	- LOST RUN					11711000000000
	4.1	69	44	20	10.0	None
7-215	- LONG RUN				P-14/2012 10/6/0	
	0.4	68	53	16	6.0	None
7-221	- RACCOON	CREEK				
	24.0	81	43	15	11.2	None
7-250	- N. FK. L	ICKING RIVER	2			
	38.2	70	38	13	6.2	None
7 - 418	- LITTLE S	UGAR CREEK				
	4.2	73	33	13	9.0	None
7 - 463	- E. BR. N	IMISHILLEN C	REEK			
	8.6	63	39	19	12.0	None
7 - 484	- SWARTZ D	ITCH				
	0.2	46	34	20	13.0	Channelization
7-553	- RIVER ST	YX				
	3.9	36	29	17	14.0	Channelization
7-556		HIPPEWA CREE			Attrice (Pol	an areas and works a 2-7-17-17-17-17-17-17-17-17-17-17-17-17-1
	11.4	35	32	10	0.8	Channelization
		LITTLE CHIE				
	0.1	60	34	6	1.0	None
7-655		ELLOWAY CREE				
	2.0	84	54	20	17.5	None

Appendix la. Ohio headwater "warmwater" and "modified" reference sites used in analyses of the QHEI.

					Drainage		
Riv	er Mile	QHEI	IBI	Species	Area (sq mi)	Modification	
7-656	- E. BR. JELLO	WAV CDEE	ĸ				
. 000	2.3	75	52	17	4.0	Marco	
7-714	- MUDDY FORK M			11	4.8	None	
	18.5	51	45	22	20.0	**************************************	
7-725	- LANG CREEK	01	710	44	20.0	None	
	3.2	68	47	17	14.0	None	
8-040	- EAGLE CREEK		• •	±30	14.0	None	
	22.5	52	43	15	5.5	None	
8-043	- S. FK. EAGLE		1000		0.0	None	
	3.9	63	42	21	9.3	None	
3-046	- SILVER CREEK				700.00		
	0.8	74	48	16	11.0	None	
	2.3	73	44	14	9.0	None	
3-504	- LITTLE YANKE						
	9.5	75	42	13	9.0	None	
8-505	- LITTLE DEER (
L HEMETERS	0.5	73	37	16	7.0	None	
9-007	- TINKERS CREE						
5 (0/2/0/	29.0	56	29	10	3.0	None	
9-028	- BREAKNECK CRI						
2 222	14.7	76	42	22	5.1	None	
)-014	- E. FK. E. BR.						
	2.7	64	44	12	16.0	None	
			Weste	rn Allegheny	7 Plateau		
1-037	- SCOTTS CREEK						
T 1000	8.1	70	48	11	1.6	None	
	8.9	76	56	7	0.3	None	
1-510	- DURBIN RUN		27070				
	0.4	31	26	8	2.5	Channelization	
1-520	- TURKEY RUN			1960	2.0		
	1.4	65	34	9	8.0	None	
	- M. FK. SALT (CREEK					
2-611	22.1	69	51	15	4.9	None	
2-611			51	15	4.9	None	
2-611 2-728	22.1 - MILL CREEK 1.0		51 52	15 25	4.9 17.0	None None	
2-611 2-728	22.1 - MILL CREEK 1.0 - LEITH RUN	69 75					
2-611 2-728 6-013	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8	69					
2-611 2-728 6-013	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK	69 75 83	52 50	25 17	17.0	None	
2-611 2-728 6-013 6-066	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0	69 75	52	25	17.0	None	
2-611 2-728 6-013 6-066	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN	69 75 83 68	52 50 36	25 17 3	17.0 6.0 4.0	None None	
2-611 2-728 5-013 5-066 5-101	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3	69 75 83	52 50	25 17	17.0 6.0	None None	
2-611 2-728 5-013 5-066 5-101	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK	69 75 83 68 74	52 50 36 33	25 17 3 7	17.0 6.0 4.0 8.0	None None None	
2-611 2-728 6-013 6-066 6-101 6-106	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK 12.3	69 75 83 68 74	52 50 36	25 17 3	17.0 6.0 4.0	None None	
2-611 2-728 6-013 6-066 6-101 6-106	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK 12.3 - CEDAR LICK CREEK	69 75 83 68 74 50 REEK	52 50 36 33 37	25 17 3 7	17.0 6.0 4.0 8.0	None None None None None	
2-611 2-728 6-013 6-066 6-101 6-106 6-203	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK 12.3 - CEDAR LICK CH	69 75 83 68 74	52 50 36 33	25 17 3 7	17.0 6.0 4.0 8.0	None None None	
2-611 2-728 6-013 6-066 6-101 6-106 6-203	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK 12.3 - CEDAR LICK CR 0.1 - ARCHERS FORK	69 75 83 68 74 50 REEK 70	52 50 36 33 37 52	25 17 3 7 7	17.0 6.0 4.0 8.0 1.2 6.6	None None None None None None	
2-611 2-728 6-013 6-066 6-101 6-106 6-203 6-420	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK 12.3 - CEDAR LICK CH 0.1 - ARCHERS FORK 2.2	69 75 83 68 74 50 REEK	52 50 36 33 37	25 17 3 7	17.0 6.0 4.0 8.0	None None None None None	
2-611 2-728 5-013 5-066 5-101 5-106 5-203 5-420	22.1 - MILL CREEK 1.0 - LEITH RUN 2.8 - WILLS CREEK 4.0 - CAT RUN 3.3 - BEND FORK 12.3 - CEDAR LICK CR 0.1 - ARCHERS FORK	69 75 83 68 74 50 REEK 70	52 50 36 33 37 52	25 17 3 7 7	17.0 6.0 4.0 8.0 1.2 6.6	None None None None None None	

Appendix la. Ohio headwater "warmwater" and "modified" reference sites used in analyses of the QHEI.

Rive	er Mile	QHEI	IBI	Species	Drainage Area (sq mi)	Modification
6-504	- WILLIAMS	CREEK				
	1.4	57	51	17	11.0	None
6-704	- PINEY FOR				11,0	HOLE
	0.3	67	55	17	15.0	None
6-708	- BAKER FOR			75.5	1010	Horic
	0.4	61	53	17	12.0	None
6-915	- NANCY RUN		(5)(6)	97.5		HOME
	1.0	69	46	9	8.0	None
6-931	- ELKHORN (97/75	1247		none
	6.6	83	49	9	3.0	None
6-932	- STRAWCAME		17.53			Hone
	0.4	75	52	15	5.0	None
6-933	- CENTER FO		11.EE	-	1158FL \$158FL	-0.0000 40m
	0.1	69 .	60	19	12.0	None
6-934	- TRAIL RUN		34.36		4.66.4.67	15-68-40w
and the second second	0.3	68	50	10	3.0	None
9-720	- COULLEY F		W. W.	20		110000
- See See	0.2	55	49	16	4.6	None
7-120	- IRISH CRI		10	10	1.0	Hone
	2.2	65	46	16	15.0	None
7-153	- DOUGHTY (10		10.0	None
, 100	15.4	72	49	19	14.0	None
7-214	- PAINTER F			10	11.0	None
	0.3	60	47	18	6.0	None
7-308	- BLACK FOR		78.4	10	0.0	None
, 500	2.5	55	26	12	9.6	Channelization
	2.7	51	26	14	9.5	Channelization
	3.5	90	42	18	8.4	None
7-325	- OGG CREEP		.74	10	0.1	NOTE
1 320	1.5	49	32	11	5.5	Channelization
	2.1	77	42	11	4.5	None
7_879	- MILLER CE		42	-1.1	4.0	None
. 010	0.2	37	24	11	11.6	Mine Affected
7-881	- RANNELS (24	11	11.0	time wriected
1-001	1.0	46	27	13	5.6	Mine Affected
	1.0	40	41	13	5.0	Title Attected
			Easte	ern Corn Bel	t Plains	
2-085	- SYCAMORE	CREEK				
	4.7	61	46	18	19.0	None
2-181	- TAYLOR CE					
	4.4	77	39	21	12.0	None
2-182	- SILVER CE	REEK				
	2.4	68	40	21	13.0	None
2-200	- BIG DARBY	Y CREEK				
	79.2	66	46	15	5.0	None
	79.2	66	46	15	5.0	None
	79.3	71	48	19	5.0	None
2-221	- PLEASANT					
	0.5	68	56	20	9.4	None

Appendix 1a. Ohio headwater "warmwater" and "modified" reference sites used in analyses of the QHEI.

					Drainage	
Riv	er Mile	QHEI	IBI	Species		Modification
2-222	- SPAIN CR	EEK				
	0.4	71	56	19	9.1	Mana
	0.5	70	54	25	9.1	None None
	3.6	76	49	15	6.0	
2-223	- FLAT BRA		10	10	0.0	None
	0.8	29	34	15	13.9	Chan-1:+:
	0.9	27	28	14	13.9	Channelization
2-231		GEORGES CR		1.1	13.3	Channelization
	6.0	63	34	5	1.5	News
2-237		CKSWALE DIT		9	1.0	None
95 EROV	2.6	37	27	13	3.0	Channalias ti-
2-251	- LITTLE D		41	13	3.0	Channelization
an made	0.5	87	52	19	5.4	Mana
	3.7	62	44	13	2.4	None
2-540	- CLEAR CR		77	13	2.4	None
	6.8	76	51	26	19.0	None
	8.5	81	57	22	13.0	None
2-562		ATTLESNAKE (22	13.0	None
	4.4	60	24	15	10.0	OMESSES
4-055		ORDON CREEK		13	19.0	None
1 000	3.8	38	27	11	c 0	OL
4-240	- HUFFMAN (21	11	6.0	Channelization
. 210	1.7	49	46	14	1 6	V42222
4-518	- CENTER BI		40	14	1.5	None
4-010	3.2	40	30	10	15.5	61 11 11
M_51Q	- CARTER C		30	10	15.5	Channelization
4-013	2.1	48	24	10	10.0	OI 11 11
5-010	- SUGAR CRI		24	12	10.0	Channelization
0-010	3.4	95	44	13	11 7	NT
5-042	- PARAMOUR		44	13	11.7	None
0-042	6.3	32	34	11	4 5	ct 11
5_050		. TO PARAMO		11	4.5	Channelization
	3.7	32		0	1.0	of 1.
	- NEWMAN RI		45	9	1.0	Channelization
1-030	0.3	ON 65	47	10	0.0	NT 2000
1_021	- MILL RUN		47	18	9.0	None
1-031	0.4	59	46	17	0.0	Mawa
1-032	- GLADY RU		40	17	8.0	None
1-032	5.8	60	33	c	4.0	Mana
1_401	- OLDTOWN (33	6	4.0	None
1-401	0.1	68	45	1.4	10.0	None
4_006	- BLUEROCK		40	14	10.0	None
4-000	1.4	78	36	7	4.4	Mana
4_020	- BEAR CREI		90	1	1.4	None
4-029			20	15	10.0	Mana
1_075	12.1	62	38	15	12.0	None
4-019	- MCKEES CI		45	10	15.0	Manual
4 004	0.5	80	45	15	17.0	None
4-084	- CHEROKEE		00	207	10.0	X
4 100	3.5	77	39	14	16.0	None
4-100	- MAD RIVE			2.2		
	60.9	67	50	16	7.5	None

Appendix la. Ohio headwater "warmwater" and "modified" reference sites used in analyses of the QHEI.

14-120 - CHAPMAN CREEK 4.0 78 45 14-130 - NETTLE CREEK 4.5 66 36 8.2 72 42 14-139 - MACOCHEE CREEK 2.8 80 44 14-203 - BRUSH CREEK 0.1 60 46 14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26	14 17.0 10 15.0 11 8.0	None
4.0 78 45 14-130 - NETTLE CREEK 4.5 66 36 8.2 72 42 14-139 - MACCCHEE CREEK 2.8 80 44 14-203 - BRUSH CREEK 0.1 60 46 14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	10 15.0 11 8.0	None
14-130 - NETTLE CREEK 4.5 66 36 8.2 72 42 14-139 - MACOCHEE CREEK 2.8 80 44 14-203 - BRUSH CREEK 0.1 60 46 14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	10 15.0 11 8.0	None
8.2 72 42 14-139 - MACOCHEE CREEK 2.8 80 44 14-203 - BRUSH CREEK 0.1 60 46 14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	10 15.0 11 8.0	None
8.2 72 42 14-139 - MACOCHEE CREEK 2.8 80 44 14-203 - BRUSH CREEK 0.1 60 46 14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	11 8.0	
14-139 - MACOCHEE CREEK 2.8 80 44 14-203 - BRUSH CREEK 0.1 60 46 14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	11 8.0	
2.8 80 44 14-203 - BRUSH CREEK		110110
2.8 80 44 14-203 - BRUSH CREEK		
14-203 - BRUSH CREEK	11 14.0	None
14-208 - PAINTER CREEK 16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	15.7 (5.68)	none
16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	16 17.0	None
16.2 46 27 14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL		110110
14-220 - GREENVILLE CREEK 34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	14 3.5	Channelization
34.4 61 53 14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	9.0	OHER HIS LIZE CLOI
14-236 - INDIAN CREEK 2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	21 6.0	None
2.0 41 23 14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL		110110
14-238 - N. FK. STILLWATER RIVER 0.4 41 26 14-317 - WELKER LATERAL	11 19.0	Channelization
0.4 41 26 14-317 - WELKER LATERAL	10.0	CHAINGITZACIOI
14-317 - WELKER LATERAL	14 18.0	Channelization
	1010	OmaniGLLZGCIOI
	6 1.7	Channelization
14-501 - LITTLE TWIN CREEK	S #55.A	STATE OF STA
6.3 66 49	20 4.0	None
14-505 - BANTAS FORK		
9.4 81 48	17 9.0	None
14-606 - NINEMILE CREEK		110010
4.2 43 28	12 9.2	Channelization
6.4 27 22	8 1.6	
14-802 - N. FK. GREAT MIAMI RIVER		Section of the property of the state of the section
10.5 32 27	10 8.5	Channelization
17-220 - S. FK. LICKING RIVER		STREET, STREET
28.5 70 42	17 15.0	None
31.5 64 36	14 12.0	
17-650 - KOKOSING RIVER	10.0	110110
49.8 84 56	25 14.5	None

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

r Mile - KONZEN DITCI	QHEI	IBI	Species	Area (sq mi)	Modification
- KONZEN DITCI					
- KONZEN DITCI					
- KONZEN DITCH		Huron	Erie Lake l	Plain	
	H				
0.7	40	25	12	24.0	Channelization
- GORDON CREEN					
6.8	33	23	18	37.0	Channelization
			21	112.0	None
	100000000000000000000000000000000000000	28	19	112.0	None
	43	19	12	40.0	Channelization
		26	24	114.0	Channelization
	AIZE RIVER	5			
18.8	37	31	17	90.0	Channelization
41.1	22	30	18	34.0	Channelization
- HOAGLIN CREE	ŒΚ				
5.8	31	23	13	41.0	Channelization
- TOWN CREEK					
19.8	28	24	10	22.0	Channelization
- SUGAR CREEK				1/7/7/JODE	***************************************
0.7	52	26	15	64.0	None
3.5	57				None
- TWELVEMILE C					110110
1.7		21	11	35.0	Channelization
- MUD CREEK				00.0	CHAMICITZACIO
	56	27	18	55.0	Channelization
			10	00.0	CHMINGLIZACIO
	54	26	14	36.0	Channelization
			10.00	0010	CHAINETIZACIO
	70	27	14	43.0	None
		44.	1.1	43.0	None
	104.0 ME (12.0)	32	17	60.0	None
		Inter	ior Plateau		
- ROCKY FORK I	PAINT CREE	K			
	63	38	30	34.0	None
	69	35	23	115.0	None
- OHIO BRUSH C	REEK				
15.2	85	47	27	371.0	None
	85				None
			550	10.0	one
			28	140 0	None
					None
	4.3 4.4 - NORTH POWELI 7.4 - BLUE CREEK 3.5 - LITTLE AUGLA 18.8 41.1 - HOAGLIN CREEK 5.8 - TOWN CREEK 19.8 - SUGAR CREEK 0.7 3.5 - TWELVEMILE C 1.7 - MUD CREEK 1.6 - LICK CREEK 11.0 - MUDDY CREEK 21.1 - TOUSSAINT CREEK 21.1 - TOUSSAINT CREEK 20.0 - ROCKY FORK F 18.1 - EAGLE CREEK 11.6 - OHIO BRUSH CREEK 11.6	4.4 55 - NORTH POWELL CREEK 7.4 43 - BLUE CREEK 3.5 35 - LITTLE AUGLAIZE RIVER 18.8 37 41.1 22 - HOAGLIN CREEK 5.8 31 - TOWN CREEK 19.8 28 - SUGAR CREEK 0.7 52 3.5 57 - TWELVEMILE CREEK 1.7 43 - MUD CREEK 1.6 56 - LICK CREEK 11.0 54 - MUDDY CREEK 21.1 70 - TOUSSAINT CREEK 21.1 70 - TOUSSAINT CREEK 20.0 55 - ROCKY FORK PAINT CREE 18.1 63 - EAGLE CREEK 11.6 69 - OHIO BRUSH CREEK 15.2 85 15	4.3 62 24 4.4 55 28 - NORTH POWELL CREEK 7.4 43 19 - BLUE CREEK 3.5 35 26 - LITTLE AUGLAIZE RIVER 18.8 37 31 41.1 22 30 - HOAGLIN CREEK 5.8 31 23 - TOWN CREEK 19.8 28 24 - SUGAR CREEK 0.7 52 26 3.5 57 35 - TWELVEMILE CREEK 1.7 43 21 - MUD CREEK 1.6 56 27 - LICK CREEK 11.0 54 26 - MUDDY CREEK 21.1 70 27 - TOUSSAINT CREEK 21.1 70 27 - TOUSSAINT CREEK 20.0 55 32 Inter - ROCKY FORK PAINT CREEK 18.1 63 38 - EAGLE CREEK 11.6 69 35 - OHIO BRUSH CREEK 15.2 85 47 15.2 85 47 15.2 85 47 15.2 85 47 25.1 75 52 39.4 70 55 44.7 66 49 - W. FK. OHIO BRUSH CREEK 1.1 70 48	- POWELL CREEK	- POWELL CREEK 4.3 62 24 21 112.0 4.4 55 28 19 112.0 - NORTH POWELL CREEK 7.4 43 19 12 40.0 - BLUE CREEK 3.5 35 26 24 114.0 - LITTLE AUGLAIZE RIVER 18.8 37 31 17 90.0 41.1 22 30 18 34.0 - HOAGLIN CREEK 5.8 31 23 13 41.0 - TOWN CREEK 19.8 28 24 10 22.0 - SUGAR CREEK 0.7 52 26 15 64.0 3.5 57 35 19 58.0 - TWELVEMILE CREEK 1.7 43 21 11 35.0 - MUD CREEK 1.7 43 21 11 35.0 - MUD CREEK 1.6 56 27 18 55.0 - LICK CREEK 11.0 54 26 14 36.0 - MUDDY CREEK 21.1 70 27 14 43.0 - TOUSSAINT CREEK 21.1 70 27 14 30.0 - TOUSSAINT CREEK 21.1 70 27 14 30.0 - TOUSSAINT CREEK 21.1 70 27 14 43.0 - TOUSSAINT CREEK 21.1 70 27 14 43.0 - TOUSSAINT CREEK 21.1 70 27 14 43.0 - TOUSSAINT CREEK 21.1 70 27 371.0 - TOUSSAINT CREEK 22.0 55 32 17 60.0 Interior Plateau - ROCKY FORK PAINT CREEK 15.2 85 47 27 371.0 - TOUSSAINT CREEK 15.4 85 47 27 371.0 - TOUSSAINT CREEK 15.5 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

				Drainage	
River Mile	QHEI	IBI	Species		Modification
0-400 - WHITEOA	K CREEK				
6.6	75	52	27	222.0	Mana
12.8	82	35	27		None
10-420 - E. FK.		FK	41	213.0	None
3.2	70	52	32	70.0	¥45.000
10-430 - N. FK.		DV JZ	32	73.0	None
6.8	56	39	20	40.0	
1-010 - O'BANNO		33	22	48.0	None
0.3	71	36	0.5	50.0	520
11-100 - E. FK.			25	58.0	None
35.6	75	56	0.0	000.0	P20
41.2	70		33	236.0	None
54.2	70	52	27	216.0	None
1-107 - STONELI		43	28	159.0	None
1.2		4.0	44	7200	
3.1	71	42	22	76.0	None
	60	54	32	71.0	None
1-150 - W. FK.					
0.2	77	41	19	28.0	None
.1-151 - DODSON (
0.2	63	45	25	32.0	None
		Erie	Ontario Lake	Plain	
03-001 - GRAND R	IVER				
83.5	53	40	24	85.0	Manage
3-120 - MILL CRI		40	24	03.0	None
10.0	90	37	21	00.0	N.
17.2	63	37	25	86.0	None
3-130 - ROCK CRI		31	20	70.0	None
0.8	74	10	20	55.0	
7-001 - ASHTABU		48	30	57.6	None
27.2		40	0.4		32
	73	40	21	65.0	None
7-004 - W. BR. A			12/2		
1.9	74	45	21	27.0	None
8-103 - BULL CRI		2:21			
1.9	85	38	12	40.0	None
3-100 - E. BR. I					
21.9	79	47	23	24.0	None
3-205 - N. BR. I	ROCKY RIVER				
5.5	70	43	21	35.0	None
5-001 - CHAGRIN	RIVER				
4.0	76	44	21	246.0	None
33.4	83	46	21	54.0	None
7-181 - APPLE CF	REEK		ar		A. C.
6.4	75	33	14	24.0	None
7-211 - LOST RUN				304040#0900	A POP & AND
0.3	81	47	22	23.0	None
7-250 - N. FK. I			22	2040	none
24.0	82	47	23	64.0	None
7-260 - LAKE FOR			43	64,0	None
0.1	56	45	21	34.0	None

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

Street Control			44440000		Drainage	
Rive	er Mile	QHEI	IBI	Species	Area (sq mi) Modification
7-406	- M EK 9	SUGAR CREEK				
100	1.7	59	38	10	00.0	★ ₩327700 \ \
7-462		IMISHILLEN	ODDDD VDDDD	12	63.0	None
1 104	6.8	47	35	23	24.0	10x1000000
7-500	- TUSCARAW		33	43	34.0	None
	119.4		43	21	9E 0	VI
		HIPPEWA CRE		21	35.0	None
	0.1	31	32	10	29.0	Channelineti
	- JELLOWAY		-	10	23.0	Channelization
	4.4		50	26	37.5	None
7-662	- SCHENCK		00	20	31.3	None
	2.8		48	21	39.3	None
7-674		OKOSING RIV		41	55.5	None
	6.3	86	47	22	84.0	None
7-714	- MUDDY FO	RK MOHICAN I			01.0	None
	12.8		40	27	42.0	None
7-718	- JEROME F				12.0	Hone
	13.0	60	35	24	38.0	None
8-001	- MAHONING	RIVER			00.0	Hone
	91.5	57	43	22	44.0	None
9-028	- BREAKNEC	K CREEK		75.77%		110110
	6.8	67	42	18	40.0	None
0-010	- E. BR. B	LACK RIVER		VECTA-	1100-700-700	
	11.1	63	42	21	185.0	None
1-001	- VERMILIO	N RIVER			10.000000000000000000000000000000000000	
	44.5	93	47	23	78.0	None
1-006	- BUCK CRE	EK				
	1.1	92	37	19	21.0	None
			Weste	rn Allegheny	v Plateau	
1 100	PEDEDAL	ODERW.				
	- FEDERAL		50	0.5	400.0	114400000
	1.3	71	50	37	138.0	None
1-110	- MCDOUGAL		40	00	00.0	19410250
1 400	2.4	63	42	30	29.0	None
1-400	- CLEAR CR 2.0	84	40	00	00.0	TARGERES
2 600			40	22	89.0	None
2-000	- SALT CRE 25.9	69 69	51	00	155.0	31
9 611	- M. FK. S		51	29	175.0	None
2-011	0.3	63	52	20	100.0	None
2-710		CIOTO BRUSH		30	109.0	None
2-110	0.6	85	50	24	112 0	Mana
2-800	- SUNFISH		50	24	112.0	None
2-000	8.0 8.0	89	51	31	122 0	None
6-100	- CAPTINA		91	31	132.0	None
3-100	6.7	73	50	26	154 0	None
	14.5	84	55	31	154.0 134.0	None None
	20.5	81	57	32	91.0	None
6-106	- BEND FOR		0.1	32	31.0	None
T 170	0.6	73	49	20	27.0	None
	Program Program Tolling	10, 51, 54,		TT-55	(Company of the Comp	CTV-17-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

Sale a-Constitution of the			Drainage			
River Mile	QHEI	IBI	Species		Modification	
6-117 - S. FK.	CAPITNA CDEE	и				
0.2	78	57	31	26.0	Marco	
6-123 - N. FK.			31	36.0	None	
0.5	79	47	27	22 0	VICE	
6-210 - MCINTYF		7.1	41	33.0	None	
0.1	70	40	15	27 0	M: 100 1	
6-400 - LITTLE			13	27.0	Mine Affected	
17.3	73	53	34	234.0	Vene	
5-440 - WITTEN		00	04	234.0	None	
1.1	80	49	26	43.0	None	
5-500 - MCMAHON		75.00	20	45.0	None	
2.3	65	28	21	85.0	Mino AFF1-1	
5.6	65	32	25	80.0	Mine Affected Mine Affected	
6-700 - SUNFISH		9.5	20	00.0	raine Affected	
5.0	70	51	28	101.0	Mone	
7.1	86	51	26	99.0	None	
17.3	68	45	20	49.0	None None	
23.9	77	43	19	22.0	None None	
5-900 - YELLOW		10	13	22.0	None	
27.5	72	28	17	29.0	Mine Affected	
5-910 - N. FK.		20	1.7	43.0	mine Affected	
0.8	77	48	25	58.0	None	
6.2	79	44	21	41.0	None	
5-931 - ELKHORN			21	41.0	None	
0.5	73	34	25	22.0	Mono	
3-001 - LITTLE		34	25	33.0	None	
15.0	81	49	23	261 0	None	
8-100 - N. FK.			43	261.0	None	
7.6	80	45	26	100.0	Nama	
3-200 - M. FK.			20	106.0	None	
1.9	81	48	27	141.0	Nama	
9.0	87	48 45		141.0	None	
3-300 - W. FK.			22	114.0	None	
0.8	90	55	97	111 0	Vana	
12.9	85	56	27		None	
9-400 - PINE CR		90	30	7.4.0	None	
20.5	68	4.1	21	102.0	Mana	
		41	31	102.0	None	
9-600 - SHADE R		-40	0.7	101.0	NT.	
16.4	58	43	27	131.0	None	
7-035 - S. FK.		42	2020	70.0	***	
4.9	59	47	23	73.0	None	
7-044 - W. BR.		17	0.4	140.0	**	
3.5	81	47	24	140.0	None	
7-070 - OLIVE G		4.77	20	50.0		
2.7	83	47	30	79.0	None	
7-153 - DOUGHTY		400				
0.7	61	43	22	59.0	None	
7-210 - ROCKY F				88.5		
2.0	83	53	29		None	
2.1	73	51	32	76.0	None	

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

-27						
Riv	er Mile	QHEI	IBI	Species	Area (sq mi	i) Modification
17-310	- JONATHAN	CREEK				
	12.3	65	35	19	105.0	Material
17-400	- SUGAR CR	C. C	00	13	105.0	None
	3.8	73	48	29	337.0	Mana
17-502	- WHITE EY		10	43	331.0	None
	0.3	56	39	25	53.0	None
17-870	- BUFFALO		0.0	23	33.0	none
	7.2	40	23	11	32.0	Mine Affected
17-890	- BUFFALO	CREEK	555		02.0	rune Arrected
	0.8	36	25	15	49.0	Mine Affected
17-960	- WAKATOMI	KA CREEK		ATTACK A	10.0	mine arrected
	2.0	57	51	31	231.0	None
	12.5	59	54	33	154.0	None
	14.9	90	52	29	140.0	None
				No.		a constant
			Easte	ern Corn Beli	t Plains	
01-001	- HOCKING	RIVER			V	
	96.2	88	27	9	24.0	Channelization
02-079	- LITTLE W	ALNUT CREEK			17.02.5	CHARLETERCION
	0.5	59	47	22	44.0	None
02-100	- BIG WALN	UT CREEK			0.000	
	61.9	74	42	16	35.0	None
02-109	- MILL CRE	EK			Marie of the	1400000000
	28.1	66	48	21	64.0	None
02-145	- FULTON C	REEK			100.00.00	(1100000)
	10.4	54	42	20	23.0	None
02 - 158	- LITTLE S	CIOTO RIVER				
	9.2	72	33	19	73.0	None
	11.2	49	44	24	47.0	None
02-165	- RUSH CRE	EK				
	4.2	49	41	25	85.0	None
02-200	- BIG DARB	Y CREEK				
	3.2	84	54	37	554.0	None
	3.3	85	41	27	554.0	None
	13.4	90	54	29	534.0	None
	41.8	94	54	25	240.0	None
	54.2	82	50	25	136.0	None
	55.1	76	52	30	135.0	None
	63.7	65	51	27	119.0	None
	76.6	75	51	28	32.0	None
02-210	- LITTLE D					
	15.2	87	51	25	162.0	None
2-300	- DEER CRE					
	51.4	77	45	25	82.0	None
02-302	- HAY RUN					
	4.0	57	52	22	20.1	None
02-400	- OLENTANG					
	14.7	93	38	22	483.0	None
02-450	- WHETSTON					
	25.5	69	46	19	26.0	None

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

				Drainage			
Riv	er Mile	QHEI	IBI	Species	Area (sq mi)	Modification	
2-500	- PAINT CR	rev -					
	79.9	65	48	22	39.0	None	
2-522	- COMPTON	CREEK		1997		Horic	
2921 - R2012996	1.4	80	52	34	59.0	None	
)2-550	- RATTLESN						
	15.0	80	33	17	123.0	None	
)2-579	- SUGAR CR				0000000000000		
1 100	26.8	28	36	11	30.0	Channelization	
4-100	- AUGLAIZE 96.8		0.77	00			
14_160	- BLANCHAR	37	37	22	65.0	Channelization	
4-100	71.8		20	0.4	145.0	ngg	
	88.3	67 57	39 33	24	145.0	None	
	96.4			21	83.0	None	
	97.5	25	30	26	48.0	Channelization	
11_105	- EAGLE CRI	32	30	23	43.0	Channelization	
4-100	- EAGLE CK	67	4.4	00	07.0	THE COUNTY	
4-200	- OTTAWA R	A CONTRACTOR OF THE PARTY OF TH	44	23	37.0	None	
1-200	46.1	76	41	20	00.0	***	
4_617	- BEAVER CI		41	20	98.3	None	
4-011	2.8	63	22	05	10.0	•	
5-200	- HONEY CRI		33	25	43.0	None	
0-200	12.5	84	42	29	140.0	4.1	
	35.2	37	26		149.0	None	
5-300	- TYMOCHTE		20	15	26.0	Channelization	
0-000	6.1	64	32	10	000 0		
	8.6	62	38	19 23	232.0	None	
1-001	- LITTLE M		30	23	229.0	None	
1 001	85.4	86	51	27	104.0	V	
1-100	- E. FK. L			21	104.0	None	
1 100	75.3	69	44	20	22.0	None	
1-200	- TODD FORE		1111	20	23.0	None	
	20.3	78	45	25	54.0	None	
1-306	- ANDERSON		-10	23	54.0	HOHE	
	5.0	71	51	30	77.0	None	
2-001	- HURON RIV		0.1		11.0	Horre	
	14.5	60	41	23	350.0	None	
2-200	- W. BR. H		200	35	30010		
	3.7	66	39	21	236.0	None	
	7.7	67	44	21	233.0	None	
2-206	- SLATE RU		50000	~~	45510	- TANALO	
00 F-5-5	4.1	49	33	13	41.0	None	
4-010	- INDIAN CE			₹.		1.000000	
	4.1	69	41	26	100.0	None	
	4.9	76	46	31		None	
	9.4	77	46	26	82.0	None	
4-022	- ELK CREE			20		a received the	
3. 3. 40.64	3.7	91	50	25	37.5	None	
4-043	- HONEY CRI			20	0.110		
	3.2	83	48	19	86.0	None	
	10.0	72	43	19	34.0	None	
	50000	85.77	27.	77	~	17.0000000	

Appendix 1b. Ohio wading "warmwater" and "modified" reference sites used in analyses of the QHEI.

And the state of t	11/2/2007		Drainage				
River Mile	QHEI	IBI	Species	Area (sq mi) Modification		
14-048 - LOST CF	EEK						
2.5	69	41	20	58.0	NT		
8.2	77	40	15	44.0	None None		
9.7	79	48	21	31.0	1000 A 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
14-050 - SPRING		10	21	31.0	None		
1.0	73	44	15	26.0	None		
1.1	73	50	18	26.0	None		
14-100 - MAD RIV		00	10	20.0	none		
53.2	58	37	17	34.0	None		
14-111 - BEAVER		54.1	1.1	34.0	None		
0.7	77	33	14	39.0	None		
14-200 - STILLWA		30	7.4	33.0	NOUG		
47.8	78	43	22	112.0	None		
51.2	65	45	31	106.0	None		
63.0	28	28	16	29.0	Channelization		
4-235 - SWAMP C		20	10	23.0	Channelization		
4.5	40	25	15	25.0	Channelization		
4-500 - TWIN CR		20	10	20.0	CHamilerIvacion		
19.2	89	48	25	225.0	None		
35.5	84	49	25	68.0	None		
37.9	65	46	15	34.0	None		
42.2	51	41	24	28.0	None		
4-505 - BANTAS		itiet.		20.0	HOHE		
1.3	87	44	21	34.0	None		
4-700 - MUCHINI		0.50		54.0	NOTIC		
2.3	39	42	15	85.0	Channelization		
4-800 - S. FK.			10	00.0	CHARGETTZACTON		
1.5	70	43	27	51.0	None		
4-999 - MIAMI-E				0110	none		
0.1	47	20	12	100.0	Channelization		
1-001 - VERMILI		20		10010	ondinertzacion		
10.7	78	48	26	251.0	None		
2-001 - WABASH				201.0	110116		
469.5	54	23	21	124.0	Channelization		
476.2	44	25	20	102.0	Channelization		
	* * * * * * * * * * * * * * * * * * * *	28	13	102.0	CHAINTETTEGCTON		

Appendix 1c. Ohio boat "warmwater" and "modified" reference sites used in analyses of the QHEI.

mi.	- With	200	25000		Drainage	
RIV	er Mile	QHEI	IBI	Species	Area (sq mi) Modification
			Huroi	n Erie Lake	Plain	
04-001	- MAUMEE	RIVER				
	19.8	75	27	17	6330.0	None
	26.7	76	32	18	6258.0	None
	31.5	75	33	15	6058.0	None
	33.0	48	25	12	6052.0	Impounded
	38.5	56	30	11	5697.0	Impounded
	45.7	50	39	18	5655.0	Impounded
	49.6	60	31	17	5581.0	Impounded
	49.6	60	31	17	5581.0	Impounded
	54.7	61	34	19	5559.0	None
	69.8	54	28	13	2306.0	None
04-100	- AUGLAT			10	2300.0	None
	3.2	68	32	23	2428.0	None
	15.2	45	23	17		None
	28.8	77	33	26	1932.0	Impounded
	39.7	77	41		717.0	None
04-160	- BLANCH		4.1	29	327.0	None
04-100	0.2		0.5	***		Earth (Fall Wells of the
14 200	- OTTAWA	47	25	13	771.0	Impounded
74-200			20.00	(ww)	1742/681111-1710W	
	1.2	75	30	25	364.0	None
14-600	- TIFFIN		PARTY.			
	1.0	57	25	15	777.0	None
	6.5	53	33	15	737.0	None
	14.1	49	29	10	556.0	Channelization
	23.2	52	25	14	471.0	Channelization
	26.0	38	27	12	422.0	Channelization
	34.8	42	29	14	410.0	Channelization
)4-999	- MIAMI-I	ERIE CANAL				
	55.4	34	20	16	200.0	Channelization
	55.4	34	20	16	200.0	Channelization
5-001	- SANDUSI	XY RIVER	1157753	5.5	200.0	CHAINCILLAGION
	19.0	49	24	9	1253.0	Impounded
	22.7	79	40	12	1073.0	None
	23.0	50	38	19	1073.0	None
16-001			00	13	1013.0	None
MAR CHIAT	17.3	62	36	20	494.0	Mana
	17.6	63	41	24		None
	41.0	03	41	24	435.0	None
			Inter	ior Plateau		
0.000		OUTO Province	d1-0009±1			
10-220		OHIO BRUSH CR		(50)	E 52051	
2 223	1.3	82	39	27	116.0	None
1-001		MIAMI RIVER				
	24.2	78	42	21	1145.0	None
	36.0	83	45	23	959.0	None
	44.2	82	44	22	680.0	None
1-100	- E. FK.	LITTLE MIAMI	RIVER			
	15.5	76	47	18	359.0	None
					VORNOE / RAZVI	VONES APARE

Appendix 1c. Ohio boat "warmwater" and "modified" reference sites used in analyses of the QHEI.

Rive	er Mile	QHEI	IBI	Species	Area (sq mi)	Modification
	10.0	(2.4)		929227	A COMMON	
	42.3	83	45	28	212.0	None
	44.1	71	47	25	195.0	None
	54.8	78	42	19	157.0	None
			Erie	Ontario Lake	e Plain	
3-001	- GRAND RI	VED				
	6.1	81	54	25	687.0	Money
	13.4	90	48	24	630.0	None
	13.4	90	48	24		None
	22.1	84	52		630.0	None
17-150			52	23	581.0	None
1-130	35.6		40	1.7	0.07	V4/40/10/200
		70	40	17	367.0	None
7-200	50.4 - LICKING 1	51 RIVER	34	19	137.0	None
., 200	28.1	58	38	26	533.0	Mone
17-220		ICKING RIVE		20	000.0	None
1,-220	13.1	67	з9	1.4	117.0	Mana
7_222		LAKE FEEDER		14	117.0	None
1-236	0.6			10	000 0	01
7 250		43	29	12	200.0	Channelization
17-200		ICKING RIVE		00	000 0	67
	2.4	77	41	26	229.0	None
7 450	3.4	63	39	17	227.0	Impounded
1-470		RK SANDY CR		22	2000	721 S S
	0.3	49	30	12	71.0	Impounded
7-550	- CHIPPEWA		565			
	0.5	32	27	12	188.0	Channelization
	6.5	24	25	12	146.0	Channelization
	17.2	29	26	13	33.0	Channelization
17-650	- KOKOSING	RIVER				
	11.7	98	48	19	379.0	None
	20.9	74	53	22	264.0	None
	25.5	76	51	23	250.0	None
	28.7	77	50	25	202.0	None
18-001	- MAHONING		C -5370	100.00	: 000.00.00 - E 100 ()	(P) (P 250)
	46.3	48	38	18	424.0	Impounded
19-001	- CUYAHOGA					angree our record
	64.5	80	42	17	187.0	None
			Weste	ern Alleghen	y Plateau	
02_001	- SCIOTO R	TVED				
02-001	9.0		39	22	6471.0	Mono
		80				None
	56.0	68	42	26	5131.0	None
00 500	70.4	80	43	26	3849.0	None
02-500	- PAINT CR			00	4400 0	11
00 000	5.0	93	50	28	1137.0	None
02-600	- SALT CRE			19219	***	P\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	9.9	77	52	34	281.0	None
08-001		EAVER CREEK		50000	02/2020/00/	Ng12450.460
	4.5	87	45	20	496.0	None

Appendix 1c. Ohio boat "warmwater" and "modified" reference sites used in analyses of the QHEI.

1000				Drainage				
Rive	er Mile	QHEI	IBI	Species	Area (sq mi)	Modification		
	8.0	80	50	22	294.0	None		
09-300		CIOTO RIVER	00	2.2	294.0	None		
	12.6	67	51	27	200.0	None		
17-044	- W. BR. W		100.00		200.0	HOHE		
	13.3	75	46	25	116.0	None		
17-100	- CONOTTON	CREEK			11010	None		
	22.0	65	37	23	90.0	None		
17-150	- KILLBUCK	CREEK		7.5		none		
	24.9	37	32	18	463.0	None		
17-200	- LICKING	RIVER			1/2000/1/23	0.000000		
	3.6	83	40	25	753.0	None		
17-500	- TUSCARAW	AS RIVER			2010-1280/1200	245,445 ft 675		
	6.9	67	45	19	2577.0	None		
	17.7	81	44	19	2473.0	None		
	21.1	87	53	22	2443.0	None		
17-600	- WALHONDI	NG RIVER						
	1.2	94	44	23	2255.0	None		
	1.2	94	44	23	2255.0	None		
	8.0	91	45	18	1576.0	None		
	15.8	72	49	19	1505.0	None		
17-650	- KOKOSING	RIVER						
	0.5	86	46	26	483.0	None		
17-800	- WILLS CRI							
	0.3	72	44	26	853.0	None		
	27.0	37	26	12	738.0	Mine Affected		
	37.7	39	28	13	671.0	Mine Affected		
	46.6	42	26	11	554.0	Mine Affected		
17-840	 LEATHERWO 							
	0.8	42	22	10	91.0	Mine Affected		
			Easte	ern Corn Bel	t Plains			
02-001	- SCIOTO R	IVER						
	100.2	70	41	22	3197.0	None		
1	102.0	79	47	24	2638.0	None		
	105.2	70	42	24	2610.0	None		
1	133.0	63	38	18	1068.0	Impounded		
1	140.0	56	29	9	1042.0	Impounded		
	142.8	51	30	12	1021.0	Impounded		
1	150.0	50	29	13	977.0	Impounded		
		59	33	23	407.0	None		
1	179.6		36	21	226.0	None		
1	179.6 201.2	54				44		
1 1 2		54 45	22	17	76.0	Channelization		
1 1 2 2	201.2	45		17	76.0	Channelization		
1 1 2 2	201.2 221.8	45		17 26	76.0 273.0	None None		
1 1 2 2	201.2 221.8 - WALNUT C	45 REEK	22					
1 1 2 2 2 02–078	201.2 221.8 - WALNUT CI 3.8 9.3 18.9	45 REEK 78 76 66	22 53	26	273.0	None		
1 1 2 2 2 02–078	201.2 221.8 - WALNUT C 3.8 9.3	45 REEK 78 76 66	22 53 49 43	26 25 20	273.0 212.0	None None		
1 1 2 2 2 02–078	201.2 221.8 - WALNUT CI 3.8 9.3 18.9	45 REEK 78 76 66	22 53 49	26 25	273.0 212.0	None None		
02-078 02-100	201.2 221.8 - WALNUT CI 3.8 9.3 18.9 - BIG WALN	45 REEK 78 76 66 UT CREEK 77	22 53 49 43	26 25 20	273.0 212.0 183.0	None None None		

Appendix 1c. Ohio boat "warmwater" and "modified" reference sites used in analyses of the QHEI.

		Drainage				
River Mile	QHEI	IBI	Species	Area (sq mi) Modification	
02-109 - MILL CRE	zv.					
0.2	55	33	15	170 0	T	
02-200 - BIG DARBY		00	10	179.0	Impounded	
3.7	89	48	24	EE2 0	Wasse	
24.0	83	54	22	553.0	None	
25.0	81	54	23	498.0	None	
26.7	84	56	20	496.0	None	
29.3	78	45	20	457.0	None	
30.1	79	56		449.0	None	
31.8	76	46	21 23	448.0	None	
42.0	80	49		446.0	None	
55.3	84	42	18	240.0	None	
62.5	76		19	135.0	None	
02.5 02-400 - OLENTANGY		45	19	121.0	None	
5.5		20	01	500.0	24 N N	
28.1	58	39	21	529.0	Impounded	
	52	36	21	409.0	Impounded	
02-510 - N. FK. PA		- 1	00	400		
17.6	77	54	22	160.0	None	
04-100 - AUGLAIZE		10				
65.0	51	43	17	207.0	Impounded	
67.0	80	42	34	202.0	None	
05-001 - SANDUSKY						
31.0	63	43	22	1048.0	None	
43.0	62	33	9	957.0	Impounded	
46.9	79	42	14	774.0	None	
05-200 - HONEY CRE						
0.4	62	27	10	176.0	Impounded	
11-001 - LITTLE MI						
83.1	74	49	24	122.0	None	
14-001 - GREAT MI <i>A</i>	MI RIVER					
77.1	59	27	13	2591.0	Impounded	
80.7	56	36	19	2512.0	None	
83.3	61	30	14	1174.0	Impounded	
91.0	80	37	21	1150.0	None	
98.5	78	52	22	1030.0	None	
100.7	74	42	16	972.0	None	
106.8	70	45	21	911.0	None	
107.6	50	35	14	904.0	Impounded	
115.3	59	38	13	849.0	Impounded	
116.9	62	45	21	845.0	None	
130.0	71	49	25	540.0	None	
143.6	53	26	10	410.0	Impounded	
14-100 - MAD RIVER		-0000	27:37.6	s = 2000 200 (1970)	-10 400 4 19 45 55 55 55 55 55 55 55 55 55 55 55 55	
2.0	66	49	27	650.0	None	
14-200 - STILLWATE				00.000.0000	A	
18.0	73	51	25	599.0	None	
21.2	71	55	21	528.0	None	
32.9	72	45	22	233.0	None	
41.4	78	43	29	189.0	None	
14-220 - GREENVILI		40	23	103.0	NOTIC	
0.1	57	47	17	201.0	None	
0.1	01	71	7.1	201.0	None	

Appendix 1c. Ohio boat "warmwater" and "modified" reference sites used in analyses of the QHEI.

#### V 0.0000000### (#C.000		IBI		Drainage	
River Mile	QHEI		Species	Area (sq mi)	Modification
22.6 14-400 - FOURMILI	51 E CREEK	33	14	106.0	Impounded
0.3 14-500 - TWIN CRI	76	49	19	315.0	None
0.2	76	49	22	316.0	None